SENTIENT Project
Scheduling of EveNt-TrIggerEd coNtrol Tasks
Project funded under the ERC-Starting Grant #755953
The advances in electronic communication and computation have enabled the ubiquity of Cyber-Physical Systems (CPS): digital systems that regulate and control all sorts of physical processes, such as chemical reactors, water distribution and power networks. These systems require the timely communication of sensor measurements and control actions to provide their prescribed functionalities. Event-triggered control (ETC) techniques, which communicate only when needed to enforce performance, have attracted attention as a mean to reduce the communication traffic and save energy on (wireless) networked control systems (NCS). However, despite ETC’s great communication reductions, the scheduling of the aperiodic and largely unpredictable traffic that ETC generates remains widely unaddressed – hindering its true potential for energy and bandwidth savings.
To address this problem, in project the SENTIENT we are investigating the following scientific challenges:
- the construction of models for ETC’s communication traffic;
- the design of schedulers based on such models guaranteeing prescribed performance levels.
To reach these goals, we are employing methods at the cross-roads between theoretical computer science, control systems and communications engineering. We follow a two step approach:
- modeling as timed-priced-game-automata (TPGA) the timing of communications of event-triggered control systems;
- solving games over TPGAs to prevent data communication collisions and ensure prescribed performances for the control tasks.
The project’s most practical objective is to produce algorithms facilitating the efficient implementation of control loops over shared communication resources, and increasing the energy efficiency of wireless NCS.The advances will be demonstrated on automotive and wireless water-distribution control applications, showcasing the potential economic impact from the reduction of implementation and maintenance costs on CPSs.
Publications
Journal Articles
Isochronous partitions for region-based self-triggered control Journal Article
In: IEEE Transactions on Automatic Control, vol. 66, no. 3, pp. 1160–1173, 2021, ISSN: 0018-9286.
Region-Based Self-Triggered Control for Perturbed and Uncertain Nonlinear Systems Journal Article
In: IEEE Transactions on Control of Network Systems, vol. 8, no. 2, pp. 757–768, 2021, ISSN: 2325-5870.
Self-triggered output-feedback control of LTI systems subject to disturbances and noise. Journal Article
In: Automatica, vol. 120, 2020, ISSN: 0005-1098.
Towards Traffic Bisimulation of Linear Periodic Event-Triggered Controllers Journal Article
In: IEEE Control Systems Letters, vol. 5, no. 1, pp. 25–30, 2020, ISBN: 2475-1456, (Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.).
Isochronous Partitions for Region-Based Self-Triggered Control Journal Article
In: IEEE Transactions on Automatic Control, pp. 1-1, 2020, ISSN: 1558-2523.