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Abstract

Self-triggered control (STC) and periodic event-triggered control (PETC) are aperiodic sampling techniques aiming at reducing
control data communication when compared to periodic sampling. In both techniques, the effects of measurement noise in
continuous-time systems with output feedback are unaddressed. In this work we prove that additive noise does not hinder
stability of output-feedback PETC of linear time-invariant (LTI) systems. Then we build an STC strategy that estimates
PETC’s worst-case triggering times. To accomplish this, we use set-based methods, more specifically ellipsoidal sets, which
describe uncertainties on state, disturbances and noise. Ellipsoidal reachability is then used to predict worst-case triggering
condition violations, ultimately determining the next communication time. The ellipsoidal state estimate is recursively updated
using guaranteed state estimation (GSE) methods. The proposed STC is designed to be computationally tractable at the
expense of some added conservatism. It is expected to be a practical STC implementation for a broad range of applications.

Key words: Control systems, digital control, linear systems, bounded disturbances, bounded noise, self-triggered control,
networked control, dynamic output feedback, state estimation.

1 Introduction

Event-Triggered Control (ETC) and Self-Triggered
Control (STC) are possibly the two dominant aperiodic
sampling techniques of the past couple of decades. ETC,
proposed independently and with different strategies by
Tabuada (2007) and Åström and Bernhardsson (2002),
implements a state-dependent sampling mechanism,
where the current measurements are monitored con-
tinuously (or periodically, as in Periodic ETC, PETC
(Heemels et al., 2013)) only on the sensor side, and
the decision to close the loop is triggered upon the oc-
currence of a significant event. Its close relative STC
(Velasco et al., 2003) has the controller determining
when to sample next, often by predicting when an ETC
event would occur (Anta and Tabuada, 2008; Mazo and
Tabuada, 2008; Mazo Jr. et al., 2010). Both methods
promise to significantly reduce network usage on Net-
worked Control Systems (NCSs) by having input and
output data communicated only when needed. ETC
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provides the largest savings and has a straightforward
implementation — a simple triggering mechanism —,
but its actual usage in NCSs is challenging as it needs
dedicated hardware (Anta and Tabuada, 2008) and its
communication times are difficult to predict (Kolari-
jani and Mazo Jr, 2016). Such prediction is particularly
important to avoid communication collisions when mul-
tiple control loops share the network.

In STC, the controller determines the next sampling
time based on available information, thus its commu-
nication is one-step predictable by design. Its sampling
time computation is generally based on conservative es-
timates of when an ETC would trigger, and most of the
STC literature considers state-feedback with noiseless
measurement. For example, in Mazo Jr. et al. (2010), dis-
turbances may be present but are not considered in the
event prediction. While this method guarantees stability
and a finite L∞-gain, its disturbance rejection is poorer
than ETC’s, since event-triggering naturally takes dis-
turbances into account. To improve disturbance atten-
uation, Gleizer and Mazo Jr (2018) recently proposed
an STC that considers disturbances within the predic-
tion; this way STC has the same performance as ETC,
although yielding more frequent communication.

Unfortunately, most practical control systems are not
state-feedback regulators, but take the output feedback
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form. Moreover, measurement noise is always present,
which can significantly affect the event predictions that
are inherent to STC. When not all states are measured,
few approaches are available in the literature. In Almeida
et al. (2014), an observer was developed for self-triggered
state-feedback control of LTI systems. For general dy-
namic output-feedback controllers, still noiseless, Gleizer
and Mazo Jr (2018) developed a self-triggered mecha-
nism, where an open-loop ellipsoidal observer was em-
ployed. One of its drawbacks is that, as for any open-loop
observer, there is no control on its convergence. Also in
Gleizer and Mazo Jr (2018), matrix norms were used
for disturbance-related reachability, leading to excessive
conservativeness. In this work, tighter ellipsoidal reach-
ability (Kurzhanskĭı and Vályi, 1997) is instead used to
compute disturbance-related reachable sets.

Set-based methods have also been employed for ETC
and STC on recent works, such as observer-based state
feedback ETC in Moreira et al. (2019), and ETC and
STC for discrete-time systems subject to disturbances
and noise in Brunner et al. (2019). Conceptually, the lat-
ter is the most similar to our work, aside from Gleizer
and Mazo Jr (2018), because of the usage of set-based
methods for the disturbance reachability. The major dif-
ferences are the following: (i) their stability results are
for discrete-time systems, which do not immediately pro-
vide guarantees for continuous-time systems; (ii) they
invoke the novel notion of θ-uniform global asymptotic
stability (θ-UGAS), a system theoretic property weaker
than input-to-state stability, which is what we use in
this paper; (iii) their output-feedback controllers are re-
stricted to observer-based state feedback; and (iv) they
introduce new set-based events, while in this work we
employ well-established event-triggering mechanisms. In
addition, our work is particularly focused on implemen-
tation and computational efficiency, aspects that are
very briefly touched upon in Brunner et al. (2019). In
summary, to the best of our knowledge, no available
STC strategy takes measurement noise into account for
continuous-time systems, nor is it prepared for general
forms of output-feedback controllers.

This work has two main contributions: first, we prove
that, if a PETC or STC closed-loop LTI system is
globally exponentially stable, then it is input-to-state
stable with respect to disturbances, measurement noise,
and additive perturbations in the triggering condition;
second, we devise a method to build self-triggered im-
plementations of controllers subject to unknown but
bounded disturbances and measurement noise. The sta-
bility results make use of the notion of homogeneous
hybrid systems from Nešić et al. (2013). The STC de-
sign is an improvement and extension of Gleizer and
Mazo Jr (2018) for the noisy case, which consists of
computing a lower bound to the triggering times of the
PETC strategy from Heemels et al. (2013). Here we use
set-theoretic methods for control, namely set-valued
reachability (SVR) and guaranteed state estimation

(GSE). The state estimator keeps track of a set that
contains all possible states in which the plant and con-
troller could be. Reachable sets from the observer state
set are then computed for a given sequence of elapsed
time instants. At each of these instants, an algorithm
checks if there is a point in the reachable set that vi-
olates a designed triggering condition. Such a check is
conservative but computationally efficient. We here-
after refer to this method as Preventive Self-Triggered
Control (PSTC), since it is designed to prevent trig-
gers later than the reference PETC. The separation
properties of linear systems allow for most of the com-
putations to be carried out offline. Like in Gleizer and
Mazo Jr (2018), we choose ellipsoids for the description
of sets, even though other descriptions have been shown
to be more effective for general-purpose SVR and GSE
(e.g., constrained zonotopes in Scott et al. (2016)). One
reason is that the considered triggering functions are
quadratic, which simplifies computations when ellip-
soids are used. In any case, efficient ellipsoidal SVR and
GSE methods are available for linear systems: for SVR
we use Kurzhanskĭı and Vályi (1997) and Kurzhanskĭı
and Vályi (2006); for GSE, we adapt the results from
Schweppe (1968), Ros et al. (2002) and Scott et al.
(2016). The final algorithm attains similar control per-
formance as PETC, while keeping the advantages of
STC and reasonably small computational costs; thus, it
is likely to fit most linear control applications.

1.1 Notation

Throughout the paper, bold letters are used for vectors
and matrices, or vector-valued and matrix-valued func-
tions; and calligraphic letters are used for sets or set-
valued functions. Signals are denoted with greek letters,
while points are denoted with roman letters.

We denote by N0 the set of natural numbers including
0, N := N0 \ {0}, and R+ := {x ∈ R : x ≥ 0}. The
floor function on x ∈ R is denoted by bxc. For a vector
x ∈ Rn we denote by |x| its 2-norm. The canonical vec-
tor, denoted by ci, has its i-th entry equal to 1 and the
rest equal to zero. For a matrixA ∈ Rn×m we denote by
AT its transpose, by rank(A) its rank, by λ(A) its eigen-
values, by λmax(A) (λmin(A)) its maximum(minimum)-
in-real-part eigenvalue, by |A| its 2-induced norm, by
Tr(A) its trace, and byA† its pseudoinverse. We denote
A|I,J the sub-matrix ofA indexed by the row index set
I ⊆ {1, ..., n} and the column index set J ⊆ {1, ...,m}.
If I = {1, . . . , n} or J = {1, . . . ,m} we use A|•,J
or A|I,•, respectively. For a symmetric square matrix
S ∈ Rn×n, the statements S � 0 and S � 0 denote that
S is positive definite or positive semidefinite, respec-
tively. We denote by Sn := {S ∈ Rn×n|S = ST},Sn+ :=
{S ∈ Sn|S � 0}, and Sn++ := {S ∈ Sn|S � 0} the sets
of symmetric, symmetric positive semidefinite, and sym-
metric positive definite, respectively. The set B(r) is a
ball of radius r ≥ 0. For two sets X1 and X2 we denote
their Minkowski sum as X1 +X2. We often denote a sin-
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gleton {x} as x when it is in an operation between sets.

2 Preliminaries

2.1 Hybrid Dynamical Systems

For stability results, we will model the STC closed-loop
system as a hybrid system, which allows states to flow
on continuous time and/or to jump instantly. In this
modeling framework, solutions are defined on the hybrid
time domain, which is a subset of R+ × N that can be
written as ∪i∈{0,...,J}([ti, ti+1] × {i}), where J ∈ N and
0 = t0 ≤ t1 ≤ ... ≤ tJ+1, with J and/or tJ+1 possibly
∞. A hybrid signal χ is a function defined on a hybrid
domain. A hybrid system is described as follows:

χ̇ = f(χ, δ), (χ(t, j), δ(t, j)) ∈ C
χ+ = gi(χ, δ), (χ(t, j), δ(t, j)) ∈ Di
ψ = h(χ, δ),

(1)

with i ∈ {1, ..., I}, where χ(t, j) ∈ Rn is the state vector,
δ(t, j) ∈ Rnd is an exogenous input, ψ(t, j) ∈ Rny is
the output vector, f , gi and h are continuous functions
with inputs and outputs of appropriate dimensions, and
C ⊆ Rn+nd and Di ⊆ Rn+nd are closed sets. Following
Cai and Teel (2009) and Nešić et al. (2013), we say that
a pair (χ, δ) is a solution to (1) if domχ = dom δ and

• for all j ∈ N and almost all t such that (t, j) ∈ domχ,
the pair satisfies (χ(t, j), δ(t, j)) ∈ C and χ̇(t, j) =
f(χ(t, j), δ(t, j));

• for all i ∈ {1, ..., I} and all (t, j) ∈ domχ such that
(t, j+ 1) ∈ domχ, the pair satisfies (χ(t, j), δ(t, j)) ∈
Di and χ(t, j + 1) = gi(χ(t, j), δ(t, j)).

Definition 1 (Lp norm, Nešić et al. (2013)) For
a hybrid signal ψ, with domain domψ, and a scalar
T ∈ R+, the T -truncated Lp-norm of ψ is given by 3

‖ψ[T ]‖p :=

j(T )∑
i=1

|ψ(ti, i− 1)|p +

j(T )∑
i=0

∫ σi

ti

|ψ(s, i)|p ds

1
p

,

(2)
where j(T ) := max{k : (t, k) ∈ domψ, t + k ≤ T}, and
σi := min(ti+1, T − i). From (2), the Lp-norm of ψ is
defined as

‖ψ‖p := lim
T→T∗

‖ψ[T ]‖p, (3)

where T ∗ = sup{t + j : (t, j) ∈ domψ} (possibly infin-
ity). The L∞ norm is taken by replacing the sums (inte-
grals) in (2) by the (essential) suprema.

Definition 2 (Global Exponential ISS, Nešić et al.
(2013)) System (1) is exponentially finite-gain input-to-
state stable from δ if there exist positive scalars k, a, and

3 As a convention,
∑0

i=1 f(i) = 0.

γ such that, for any initial condition x and any δ ∈ L∞,
all solutions to (1) satisfy

|χ(t, j)| ≤ max
{
ke−a(t+j)|x|, γ‖δ‖∞

}
(4)

for all (t, j) ∈ domχ. Moreover, the origin is globally
exponentially stable (GES) if (4) holds with δ ≡ 0.

Definition 3 (Lp stability, Nešić et al. (2013))
Given p ∈ [1,+∞), system (1) is Lp stable from δ to
ψ with gain (upper bounded by) kp ≥ 0 if there exists a
scalar β ≥ 0 such that any solution to (1) satisfies

‖ψ‖p ≤ β|x|+ kp‖δ‖p (5)

for any initial condition x ∈ Rn and any δ ∈ Lp.

The last definition we need is that of homogeneous hy-
brid systems of degree zero:

Definition 4 (Homogeneous hybrid system,
Nešić et al. (2013)) The system (1) is homogeneous
of degree zero if, for any scalar λ > 0, we have

f(λχ,0) = λf(χ,0),∀χ(t, j) ∈ C0,
gi(λχ,0) = λgi(χ,0),∀χ(t, j) ∈ Di0, i ∈ {1, ..., I},

(6)

χ ∈ C0 =⇒ λχ ∈ C0,
χ ∈ Di0 =⇒ λχ ∈ Di0,∀i ∈ {1, ..., I},

(7)

where closed sets C0,Di0 are projections of C andDi when
δ ≡ 0.

We are particularly interested in homogeneous systems
that satisfy the following assumption:

Assumption 1 (Flow and jump sets, Nešić et al.
(2013)) For system (1), there exist scalars LC and LD

such that, for all (x,d) ∈ Rn+nd ,

(x,d) ∈ C =⇒ x ∈ C0 + LCB(|d|) (8a)

(x,d) ∈ Di =⇒ x ∈ Di0 + LDB(|d|). (8b)

Homogeneous systems satisfying Assumption 1 have a
powerful stability property: 4 :

Theorem 1 (Nešić et al. (2013)) Let system (1) be
homogeneous in the sense of Definition 4 and Assump-
tion 1 hold; then, the following statements are equivalent:

• the origin of system (1) is GES if δ ≡ 0;
• system (1) is globally exponentially ISS;
• system (1) is Lp stable from δ to ψ.

4 This result was proven for a single pair of jump map and
set, i.e., I = 1. However, the proofs could incorporate mul-
tiple jump maps and sets, with the results remaining valid.
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2.2 Recursive Guaranteed State Estimator

Consider an LTI system of the form:

ξ̇p(t) = Apξp(t) +Bpυ̂(t) +Eω(t),

ψ(t) = Cpξp(t) + ν(t),

ξp(0) = xp,

(9)

where the sub-index p is used to denote plant variables,
with ξp(t) ∈ Rnp as its state, υ̂(t) ∈ U ⊂ Rnu as its
received control input, ω(t) ∈ W ⊂ Rnw as the un-
known disturbances, ψ(t) ∈ Rny as the measured out-
put, ν(t) ∈ V ⊂ Rny as the unknown measurement
noise, and xp ∈ X0 ⊂ Rnp as its initial state. The fol-
lowing assumptions hold:

Assumption 2 Sets U ,W, and V are compact, and the
pair (Ap,Cp) is observable. 5

Let FU (resp. FW) be the set of essentially bounded
piecewise continuous functions from R+ to U (resp.W).
We denote a solution of system (9) for initial state xp,
input υ̂ ∈ FU , and disturbance ω ∈ FW by

ξxpυ̂ω(t) = eAptxp +

∫ t

0

eAp(t−τ)(Bpυ̂(τ) +Eω(τ))dτ.

We are interested in computing the set of possible solu-
tions to system (9) for sets of initial states, control input
trajectories and disturbance trajectories. For that, the
following definitions are necessary.

Definition 5 (Reachability operator) Given an ini-
tial time t1, a final time t2, an initial state set X and the
sets U and W, the reachability operator reach(·) is de-
fined as reach(t1, t2,X ,U ,W) := {ξxpυ̂ω(t2) : ξxpυ̂ω(t1)
∈ X ,υ ∈ FU ,ω ∈ FW}. Moreover, the output of this
operator is denoted as the reachable set.

A recursive GSE is a set-valued version of a general re-
cursive state estimation and, as such, it follows the same
principles. A GSE requires that bounds to input, distur-
bance and noise signals are known in the form of sets:

Assumption 3 There exist known compact sets Ũ , W̃
and Ṽ such that U ⊆ Ũ ,W ⊆ W̃ and V ⊆ Ṽ.

Definition 6 (Recursive GSE, (Blanchini and Mi-

ani, 2008, Chap. 11)) Let X̃ (t1|t1) 3 ξp(t1) be an
available set estimate of the current state at time t1. Let
y := ψ(t2) be an output measurement obtained at t2. A
recursive GSE has the form

X̃ (t2|t1) = reach(t1, t2, X̃ (t1|t1), Ũ , W̃), (10a)

Xy(t2) = {xp ∈ Rnp |∃v ∈ Ṽ : Cpxp + v = y}, (10b)

X̃ (t2|t2) = X̃ (t2|t1) ∩ Xy(t2). (10c)

5 (Ap,Cp) could be relaxed to be detectable. The unob-
servable but stable subspace does not affect the controller,
thus one should only consider the observable subspace when
implementing the results in this paper.

Eq. (10a) is the prediction step, simply a reachability
operation. Eq. (10c) is the update step, where the pre-
dicted set is intersected with Xy(t2), the set of all possi-
ble states that are coherent with the measurement. By
construction, X̃ (t2|t2) 3 ξp(t2). The sets above can have
arbitrary complexity. Hence, it is common to replace the
equalities above with superset operations, then restrict-
ing the set families to computationally tractable ones.

Throughout this paper, the aforementioned sets will be
(outer-approximated by) ellipsoids. This idea dates back
to 1968 (Schweppe, 1968), when possibly the first GSE
was proposed. Ellipsoids are described by few parame-
ters – one vector and one symmetric matrix – and are
bounded. Since they may be described as quadratic in-
equalities, they also harmonize well with the quadratic
triggering functions generally employed for ETC of LTI
systems. Some definitions follow:

Definition 7 (Ellipsoid, Kurzhanskĭı and Vályi
(1997, Chap. 2)) Let m ∈ Rn and M ∈ Sn+. An
ellipsoid is defined in terms of its support function:

E(m,M) :={x ∈ Rn : lTx ≤ lTm+ (lTMl)
1/2,∀l ∈ Rn}.

Remark 1 In case the ellipsoid is not degenerate (M �
0), it can be described in the well-known inequality form
E(m,M) = {x ∈ Rn : (x −m)TM−1(x −m) ≤ 1}.
The degenerate case is flat on some of its semi-axes.

A closely related set is the elliptical cylinder. The fol-
lowing definition comes from Ros et al. (2002), with a
small change in notation:

Definition 8 (Elliptical Cylinder) Let M ∈ Sm++,
C ∈ Rm×n,m ≤ n, and rank(C) = m. An Elliptical
Cylinder is defined as

C(y,M ,C) := {x ∈ Rn : (Cx−y)TM−1(Cx−y) ≤ 1}.
Remark 2 If m < n, the elliptical cylinder is un-
bounded. If m = n, it trivially resolves to the ellipsoid
E(C−1y,C−1MC−T).

We use some operations on ellipsoids, namely affine
transformations, intersections and Minkowski sums. An
affine transformation on an ellipsoid is also an ellipsoid:
AE(m,M) + b = E(Am + b,AMAT). Even though
ellipsoids are not closed under Minkowski sums and in-
tersections, there are methods to tightly outer-approx-
imate them with ellipsoids. Here we use trace-optimal
outer-approximations. For the Minkowski sum, one has
(Kurzhanskĭı and Vályi, 1997, Chap. 2):

E(m∗,M∗) ⊇ E(m1,M1) + E(m2,M2)

m∗ := m1 +m2

M∗ := (1 + p−1)M1 + (1 + p)M2

p :=
√

Tr(M1) Tr(M2)−1.

(11)

If not empty, the intersection may be outer-approximated
by a fusion (see below). We particularly need to compute
the intersection between an ellipsoid and an elliptical
cylinder.
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Definition 9 (Fusion) (Adapted from Ros et al.
(2002)) A fusion between the ellipsoid E(m1,M1)
and the elliptical cylinder C(y,M2,C) is the ellipsoid
Eλ(m,M) defined over a parameter λ ∈ [0, 1), such that:

Eλ(m,M) ⊇ E(m1,M1) ∩ C(y,M2,C)

M = zZ−1

Z = λM−1
1 + (1− λ)CTM−1

2 C

e = y −Cm1

z = 1− λ(1− λ)eT(λM2 + (1− λ)CM1C
T)−1e

m = Z−1(λM−1
1 m1 + (1− λ)CTM−1

2 y).

(12)

The parameter λ controls how close the output ellip-
soid is to either of its inputs. For λ = 1, E0(m,M) =
E(m1,M1); when λ gets close to 0, the output tends to
be close to C(y,M2,C).

Remark 3 The trace of the matrix M is convex over λ,
since the trace of the inverse is a convex function (Boyd
and Vandenberghe, 2004) and z ∈ [0, 1] provided the in-
tersection is not empty (Ros et al., 2002). This allows
the use of bisection or golden search methods to compute
λ that minimizes the fusion trace.

2.2.1 Ellipsoidal reachability

For linear systems with ellipsoidal descriptions of
X ,U ,W, and V, ellipsoidal reachability can be used.
The concept and techniques are thoroughly explained
in (Kurzhanskĭı and Vályi, 1997, Chap. 3). Its authors
developed the Ellipsoidal Toolbox (Kurzhanskĭı and
Vályi, 2006), which contains operations to compute
reachable sets. In this paper we use the reachable set for
the disturbance response Xw(t) := reach(0, t,0,0,W).
The Ellipsoidal Toolbox has the tools to compute outer-
approximations of Xw(t), denoted by X̄w(t, l), that are
tight along the ray supported by a given vector l ∈ Rnp ,
i.e., ∀α ∈ R, αl ∈ X̄w(t, l) ⇐⇒ αl ∈ Xw(t). Overall
tighter over-approximations can be obtained by com-
puting X̄w(t, li) for different input vectors li and taking
an ellipsoidal outer-approximation of the intersection,
offering a trade-off between accuracy and precision. Let
L be a pre-specified set of the said vectors. The outer-
approximation X̃w(t) satisfies X̃w(t) ⊇ ∩l∈LX̄w(t, l).

Figure 1 depicts the sets Xw(t) and X̃w(t) for a given
instant. The Ellipsoidal Toolbox is used to compute the
intersection outer-approximation.

3 Problem definition and stability results

Consider a controller for system (9) of the form

ξc(k + 1) = Acξc(k) +Bcψ̂(k),

υ(k) = Ccξc(k) +Dcψ̂(k),
(13)

where ξc(k) ∈ Rnc is the controller state, υ(k) ∈ Rnu

is the computed control command and ψ̂(k) ∈ Rny is

x1

x2X̃w(t)

Xw(t)

Fig. 1. Illustration of a reachable set of the disturbance re-
sponse Xw(t) and an ellipsoidal outer-approximation X̃w(t).

Plant (9)

STC Algorithm

Controller (13)

ν(t)

ω(t)
ZOH

+

ψ(t)

ψ̂(kb)υ(k)

υ̂(t)

ξc(k)

υ(kb)

Fig. 2. Block diagram of a plant controlled with STC. ZOH
stands for zero-order hold.

the available plant output measurement. The controller
runs with period h, so that t = hk. The feedback loop
is of sample-and-hold form. For two consecutive sam-
pling times kb and kb+1, υ̂(t) = υ(kb),∀t ∈ [hkb, hkb+1)

and ψ̂(k) = ψ(hkb),∀k ∈ {kb, kb + 1, ..., kb+1 − 1}. The
closed-loop system is depicted in Fig. 2. We pose the
PSTC problem as follows:

Problem 1 Let the plant (9) and controller (13) models
be known and suppose that (conservative estimates of)
the sets X0,W,V are known. Design an algorithm that
computes κb := kb+1 − kb at time kb based on (histori-

cal values of) υ̂, ψ̂ and other available information, e.g.,
ξc(kb). The closed-loop system must be globally exponen-
tially ISS w.r.t. bounded disturbances and noise.

Remark 4 A compact set X0 is required for the STC
strategy we develop in Sec. 4. A large enough set may be
easily estimated in most applications. For X0 = Rnp , we
provide an initialization algorithm in Appendix C.

3.1 Triggering mechanism and stability results

In the spirit of Gleizer and Mazo Jr (2018), we design
an algorithm that computes worst-case triggering times
of PETC. For compactness of expressions, denote the
auxiliary vectors

ζ(t) :=

[
ψ(t)

υ(bt/hc)

]
and ζ̂(t) :=

[
ψ̂(bt/hc)
υ̂(t)

]
as the updated output/input and the held output/input,
respectively. We start with a centralized output-based
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PETC triggering mechanism from Heemels et al. (2013),
which for STC means that all inputs and outputs are
updated at the same time:

tb+1 = inf
t∈Tb

η(ζ(t), ζ̂(t)) > ε2, (14a)

η(ζ(t), ζ̂(t)) := |ζ(t)− ζ̂(t)|2 − σ2 |ζ(t)|2 , (14b)

where Tb = {tb + hk, tb + 2hk, ..., tb + hκ̄}, 0 ≤ σ <
1 is the designed triggering parameter, κ̄ is a specified
maximum inter-event discrete time 6 , and ε ≥ 0 is a
margin parameter. 7

Unfortunately, there are no results in the literature for
whether the closed-loop PETC system is ISS w.r.t. mea-
surement noise or a positive value of ε. Thus, first we
prove that this is the case; i.e. when the PETC (or any
mechanism that triggers earlier) is GES, then it is ISS
and Lp stable w.r.t. additive disturbances, measurement
noise, and the ε parameter. These results are relevant
not only for the current STC work, but also for PETC.

We first model the plant (9) controlled with (13) un-
der the PETC triggering rule (14) with κ̄ = ∞ as a
hybrid system (1) equipped with a timer, with χT :=

[ξTp ξ
T
c ψ̂

T υ̂T] and δT := [ωT νT ε ]; the model is[
χ̇
τ̇

]
=

[
Āχ+ B̄ω

1

]
, τ ∈ [0, h], (15a)

[
χ+

τ+

]
=


[
J1χ+Lν

0

]
,
τ=h,

(F̄ χ+Ḡν)TQ̄(F̄ χ+Ḡν)≥ε2
(15b)

(15c)[
J2χ

0

]
,
τ = h,

(F̄ χ+ Ḡν)TQ̄(F̄ χ+ Ḡν) ≤ ε2
(15d)

(15e)

ψ = C̄χ+ ν, (15f)

where

Ā =

Ap 0 0 Bp

0 0 0 0
0 0 0 0
0 0 0 0

, B̄ =

E00
0

, C̄ = [Cp 0 0 0], (16)

J1 =

 I 0 0 0
BcCp Ac 0 0
Cp 0 0 0
DcCp Cc 0 0

, J2 =

I 0 0 0
0 Ac Bc 0
0 0 I 0
0 0 0 I

, L =

 0
Bc

I
Dc


Q̄ =

[
(1− σ2)I −I
−I I

]
, F̄ =

 Cp 0 0 0
DcCp Cc 0 0

0 0 I 0
0 0 0 I

, Ḡ =

 I
Dc

0
0

,
6 This parameter often arises naturally in ETC (see Gleizer
and Mazo Jr (2018)) or can be specified by the user in order to
establish a heart beat of the system. It is necessary for STC,
in order to impose a finite number of steps to be calculated. It
does not hinder stability because it only causes early triggers
w.r.t. PETC.
7 When ε > 0, Eq. (14) is called mixed-triggering (Borgers
and Heemels, 2014), which is often used in practice to im-
prove sampling performance around the origin. When σ = 0,
it is known as Lebesgue sampling (Åström and Bernhards-
son, 2002).

where Q̄ is partitioned according to (ζ, ζ̂). The jump
map matrices represent the update of input and output
(J1) or no update except for the controller state (J2).
The quadratic inequalities represent the triggering con-
dition (14a), where condition (15c) is present for the
PETC, but absent for an STC that triggers no later than
PETC. For absent noise (ν ≡ 0) and ε = 0, LMI condi-
tions for verifying stability are available in Heemels et al.
(2013) for PETC and in Gleizer and Mazo Jr (2018) for
STC. The main result of this Section is that the system
is homogeneous in the sense of Definition 4, which im-
plies that it is input-to-state and Lp stable w.r.t. noise
and the ε parameter.

Remark 5 The choice of non-strict inequalities in
Eq. (15c) and Eq. (15e) renders the system non-
deterministic. This choice was made for mathematical
convenience: the proofs using Eq. (15) are valid across
the non-determinism, and thus cover both choices of
making strict either inequality.

Lemma 1 System (15) is homogeneous in the sense of
Definition 4 and satisfies Assumption 1.

Homogeneity is trivial; for Assumption 1, the proof is
found in Appendix A. The following result follows from
Theorem 1 and Lemma 1.

Theorem 2 If the system (9) with controller (13), using
triggering mechanism (14) (or triggering earlier) is GES
when ω ≡ 0,ν ≡ 0 and ε = 0, then it is ISS and Lp-
stable if ω 6= 0,ν 6= 0 and ε 6= 0.

Remark 6 Lemma 1 and Theorem 2 are valid for any

quadratic triggering function of the form η(ζ(t), ζ̂(t)) =[
ζ(t)T ζ̂(t)T

]
Q̄
[
ζ(t)

ζ̂(t)

]
, as long as Q̄ renders the closed-

loop GES. We focus on the triggering function (14b)
because for this case there are design procedures available
(e.g., Heemels et al. (2013)).

4 Self-triggered control implementation

In this section, we devise a method to compute a lower
bound of the PETC triggering time tb+1 from the avail-
able information at tb. This lower bound becomes the
STC triggering time. Throughout this section, we de-
note z := ζ(tb) and u := υ(tb). A way of computing such
worst-case (earliest) time is by checking, for increasing
values of κ ∈ N, κ ≤ κ̄, whether η(ζ(tb + hκ), z) can
be greater than ε2 given the available information. This
leads to the following subproblem:

Subproblem 1 Let (supersets of) X (tb) and W be
known. For a given κ ∈ {1, ..., κ̄}, determine, in a con-
servative but computationally efficient way, if there exist
x′p ∈ reach(tb, tb + hκ,X (tb),u,W) and v ∈ E(0,V )

such that η
([
Cpx

′
p + v υ(tb + hκ)

]T
, z
)
> ε2.

In the subproblem above, conservative means that, if
the exact answer cannot be established, the answer is
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assumed to be true. Note that it requires the state set
X (tb), which ideally would be a single point. The larger
this set is, the more conservative our solution is. This
brings us the following subproblem:

Subproblem 2 Given a superset ofX0, historical values

of ζ̂, and ξc(k), determine a small outer-approximation
of X (tb).

In order to use ellipsoidal methods, we assume initial set
estimates to be ellipsoids:

Assumption 4 Matrices X0 ∈ Snp

++, W̄ ∈ Snw
++, and

V ∈ Sny

++ are known, such that X̃0 = E(0,X0) ⊇
X0, W̃ = E(0, W̄ ) ⊇ W, and Ṽ = E(0,V ) ⊇ V.

Let us solve Subproblems 1 and 2 recursively. Sup-
pose that, at time kb, an ellipsoid X̃ (kb|kb−1) :=

E(ξ̃p(kb−1),Xb|b−1) 3 ξp(hkb) is known. First the state

estimate X̃ is updated with the newly acquired infor-
mation y. That is achieved through the intersection
operation in (10c), which returns X̃ (kb|kb): in this case,
Xy(tb) = C(y,V ,Cp) and therefore the trace-optimal
Fusion in Eq. (12) is used. 8 From this point, denote the
center of the state estimate as x̃p ∈ Rnp and its shape

matrix as X ∈ Snp

++; thus, X̃ (kb|kb) = E(x̃p,X).

We can now compute the reachable sets for the controller
and plant states. First define the transition matrices:

Φp(κ) := eAphκ, Γp(κ) :=

∫ hκ

0

eApsBpds, (17a)

Φc(κ) := Aκ
c , Γc(κ) :=

κ−1∑
0

Aκ
cBc, (17b)

Due to linearity, we can separate the reachable setX (tb+
hκ|tb) between the contribution of state and control in-
put, and that of the unknown disturbances:

X̃ (tb+hκ|tb)=Φp(κ)X̃ (kb|kb)+Γp(κ)u+X̃w(κ), (18a)

X̃w(κ) ⊇ Xw(κ) =
⋃

ω∈FW

∫ hκ

0

eAp(hκ−s)Eω(s)ds. (18b)

Remark 7 The computation of supersets X̃w(κ) ⊇
Xw(κ) can be done off-line for all κ ∈ {1, ..., κ̄} using the
method described in Section 2.2.1.

We are ready to solve Subproblem 1. Denote W (κ) as

the shape matrix of X̃w(κ), i.e., X̃w(κ) := E(0,W (κ));

8 Only a scalar parameter needs to be optimized and, since
the function is convex, a golden search can be used up to
a given precision. Nonetheless, this may be computationally
too expensive depending on the application. In that case, a
fixed λ can be picked, improving computation speed at the
expense of larger ellipsoids and more frequent triggering.

also, let pT := [xTp x
T
c y

T] and

CE :=

[
0 0 I
0 Cc Dc

]
,

N(κ) :=

[
CpΦp(κ) CpΓp(κ)Cc CpΓp(κ)Dc

0 CcΦc(κ) CcΓc(κ) +Dc

]
.

Note that, if there exists z′ yielding η(z′, z) > ε2, then
maxz′ η(z′, z) > ε2. This means that we can pose Sub-
problem 1 as an optimization problem:

Subproblem 3 From existing information on the con-
troller, determine the worst-case triggering function
value at a given time instant. That is, given x̃p,X,xc

and y, determine, for a given κ,

max
z′,z,xp,d,v′

η(z′, z) = [z′
T
zT]Q̄

[
z′

z

]
(19a)

subject to z′ = Nκp+

[
v′

0

]
+

[
Cpd

0

]
, (19b)

z = CE p, (19c)

(xp − x̃p)TX−1(xp − x̃p) ≤ 1, (19d)

dTW (κ)−1d ≤ 1, (19e)

v′
T
V −1v′ ≤ 1, (19f)

The decision variables are z′ representing the possible
values of ζ(tb + hκ); z; xp which is the unknown value
of ξp(tb); d as the contribution from the unknown dis-
turbances to states at tb + hκ; and v′ as the unknown
future noise ν(tb + hκ). The objective function (19a) is
the triggering function and the constraints are: (19b)
for the dynamics of ζ; (19c) as its initial condition; and
(19d), (19e) and (19f) as the ellipsoidal constraints for
the state estimate, d and v′, respectively. This problem
is solved for increasing values of κ ∈ {1, ..., κ̄}, until one
yields a value greater than ε.

Remark 8 Subroblem 3 is a non-convex Quadratically
Constrained Quadratic Programming (QCQP) problem.
Its constraints are convex but the objective function is
non-convex since Q̄ is not definite. Nevertheless, it is
always feasible: one solution is obtained by taking d =
0,v = 0,xp = x̃p, and using these values to determine
z′ and z in Eqs. (19b) and (19c).

The remark above discourages solving the actual opti-
mization problem. Instead, we propose computing a con-
servative upper bound for it like in Gleizer and Mazo Jr
(2018). Let p̃T := [x̃Tp x

T
c y

T] be the vector of available
information, N := {1, 2, ..., np}, and

Q(κ) :=

[
N(κ)
CE

]T
Q̄

[
N(κ)
CE

]
, Cw :=

[
Cp

0

]
, Cv :=

[
I
0

]
,

Fw(κ) :=
[
N(κ)T CT

E

]
Q̄Cw, Fv(κ) :=

[
N(κ)T CT

E

]
Q̄Cv,

Rw(κ) := Fw(κ)W (κ)Fw(κ)T, Rv(κ) := Fv(κ)V Fv(κ)T,

Qw := CT
wQ̄Cw, Qv := CT

vQ̄Cv, cv := λmax(V Qv),

cvw(κ) :=
√
λmax(CT

vQ̄CwW (κ)CT
wQ̄CvV ). (20)
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Note that all of the matrices and scalars above can be
computed off-line for κ ∈ {1, ..., κ̄}. Define the estimate
of the triggering function

η̄(κ, p̃,X) := p̃TQ(κ)p̃+ 2
√
p̃TQ(κ)|•,NXQ(κ)|T•,Np̃

+ λmax(XQ(κ)|N ,N ) + 2
√
p̃TRv(κ)p̃

+ 2
√
λmax(Rv(κ)|N,NX) + 2

√
p̃TRw(κ)p̃

+ 2
√
λmax(Rw(κ)|N,NX)

+ 2cvw(κ) + cv + λmax(W (κ)Qw).

All eigenvalues in Eq. (20) and in η̄ are real, because their
arguments are either symmetric matrices or products of
symmetric matrices. We have the following result, whose
proof is found in Appendix B.

Theorem 3 η̄(κ, p̃,X) provides an upper bound for the
solution of Subproblem 3. That is,

η̄(κ, p̃,X) ≥ η(z′, z)

for all z′, z,xp,d,v
′ satisfying constraints (19b)–(19f).

The controller selects κ∗ = infκ η̄(κ, p̃,X) > ε2, if η̄ > ε2

for some κ ≤ κ̄, or κ∗ = κ̄ otherwise. Finally, step (10a)
of the observer is executed using Eq. (18a). Its operations

are the affine transformation Γp(κ∗)X̃ (tb|tb) +Φp(κ∗)u

followed by a Minkowski sum with X̃w(κ∗), which is
outer-approximated through Eq. (11).

Algorithm 1 summarizes the steps performed at every
instant kb for both updating the state estimate and
computing κ∗. The operations “fusion” and “minksum”
represent the ellipsoidal outer-approximations from
Eqs. (12) and (11), respectively. The ellipsoidal GSE
(steps 2, 11 and 12) is depicted in Fig. 3.

Algorithm 1 PSTC Algorithm

Input: xc,y
Output: u, κ∗

1: u← Ccxc +Dcy
2: E(x̃p,X)← fusion (E(x̃p,X), C(y,V ,Cp)) (Eq. 12)
3: p̃← [x̃Tp x

T
c y

T]T

4: κ∗ ← 1
5: while κ∗ < κ̄ do
6: if η̄(κ∗, p̃,X) > ε2 then
7: break
8: end if
9: κ∗ ← κ∗ + 1

10: end while
11: E(x̃p,X)← Φp(κ∗)E(x̃p,X) + Γp(κ∗)u
12: E(x̃p,X)←minksum(E(x̃p,X), E(0,Wκ∗))(Eq. 11)

Remark 9 For the noiseless case (V = 0), we need to
modify step 2 of Alg. 1, because in this case the elliptical
cylinder C(y,V ,Cp) degenerates to a hyperplane. The

x1

x2 X̃ (tb|tb)

x1

x2

Φp(κ∗)E(x̃p,X) + Γp(κ∗)u

x1

x2

X̃w(hκ∗)X̃ (tb+1|tb)

x1

x2

Xy(tb+1)

X̃ (tb+1|tb+1)

Fig. 3. Steps of the ellipsoidal GSE in Alg. 1: step 11 (top
right), step 12 (bottom left) and step 2 (bottom right).

intersection between an ellipsoid and a hyperplane has an
exact ellipsoidal solution (see Schweppe (1968, Appendix
IV)).

Remark 10 The complexity of Algorithm 1 is O(κ̄
max(np, nw, ny)3). It is dominated by the iterative pro-
cedure to compute η̄ (line 6), which involves matrix mul-
tiplications and eigenvalue computations on matrices
whose sizes depend on np, nw and nw. 9

5 Numerical example 10

Consider the perturbed, unstable linearized batch plant
with a PI controller taken from Walsh and Ye (2001) 11 :

Ap =

 1.38 −0.208 6.715 −5.676
−0.581 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

,

Bp =

 0 0
5.679 0
1.136 −3.146
1.136 0

, Cc =

[
1 0 1 −1
0 1 0 0

]
, E =

1
0
0
0

 ,
Ac =

[
1 0
0 1

]
, Bc =

[
0 h
h 0

]
, Cc =

[
−2 0
0 8

]
, Dc =

[
0 −2
5 0

]
,

with h = 0.01, ξp(0) = 10[1 −1 −1 1]T and ξc(0) =
0. The triggering parameter was set to σ = 0.1. We

9 Computing eigenvalues has been proven to have the same
big-O complexity as matrix multiplication in Demmel et al.
(2007). The actual complexity of the matrix multiplication
is unknown, the best known being O(n2.37). We chose to
use the exponent of 3 because most practical algorithms for
small matrices have this complexity.
10 Code to reproduce this paper’s numerical results is avail-
able in https://github.com/ggleizer/pstc.
11 The controller was discretized using forward-Euler.
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Fig. 4. Simulation results without noise for PSTC, STC from
Gleizer and Mazo Jr (2018) (GM18-STC), and PETC: state
norm |ξ(t)| (top) and inter-event times κ∗ (bottom).

set κ̄ = 25 and computed W (κ) using the procedure
described in Sec. 2.2.1, with Xw(0) = E(0, 10−4I) and
L = {ci|i ∈ {1, 2, ..., np}}. The simulated disturbance
was the same as the one in Gleizer and Mazo Jr (2018):
ω(t) = 0.1, if t ≤ 5; 0 otherwise. Simulations were run
using Matlab R2018a on a MacBook Pro with a 3.1 GHz
Intel Core i5 and 8 GB, 2133 MHz LPDDR memory.
Noise was simulated through pseudo-random numbers
between -0.01 and 0.01, which were pre-generated for
all simulation steps with seed 1907. The optimal fusions
from Eq. (12) were computed with the function fminbnd
with default options. We set W = 0.12 and V = 2 ·
0.0112I, with the observer starting with X̃0 = Rnp .

We first simulated the closed-loop STC without noise
with ε = 0, comparing its control and sampling per-
formances with the method from Gleizer and Mazo Jr
(2018) and PETC (Fig. 4). The state norms of all cases
converge to zero at virtually the same rate, while, es-
pecially at the first two time units, PSTC yields higher
sampling times than the STC from Gleizer and Mazo Jr
(2018). This improvement is due to the intersection step
from Eq. (10c), which provides faster observer conver-
gence, and to the increased tightness of the disturbance
ellipsoidsWκ, when compared to the norm-based bounds
of Gleizer and Mazo Jr (2018). Nevertheless, for both
STC cases, the triggering times tend to 1 as the state ap-
proaches the origin because η̄(κ,0,X) > 0 for any κ,X.

For the scenario with measurement noise, Fig. 5 (top)
displays the triggering times from PSTC. These are com-
pared to the times triggered by the PETC logic (14b) at
each PSTC step. As expected, the PSTC times consti-
tute lower bounds for the PETC ones. It is also clear how
the sampling performances of both PSTC and PETC
are affected by the noise: as the inputs get close enough
to zero, noise alone can provoke a trigger. Due to that,
we also simulated a case with ε = 0.1, depicted in the
bottom plot of Fig. 5. The resulting triggering times got
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Fig. 5. Simulation results with noise. State norm |ξ(t)| with
PSTC with ε ∈ {0, 0.1} (top); inter-event times κ∗ from
PSTC and PETC with ε = 0 (middle) and ε = 0.1 (bottom).

Table 1. CPU times of Alg. 1 for the numerical example.
Time (ms)

Phase (line(s) in Alg. 1) Min. Mean Max.
Fusion (line 2) 0.39 0.49 1.71

Calculation of η̄ (line 6) 0.50 0.60 1.90
Prediction (lines 11 and 12) 0.02 0.02 0.08

Full PSTC cycle 1.01 1.27 8.49

significantly higher at a small cost in steady state error.

The on-line CPU time statistics of Alg. 1 are displayed
in Table 1. These numbers were obtained for the case
with noise with ε = 0, after ten consecutive runs of the
main script to mitigate the overhead from, e.g., just-in-
time compilation and process management of the oper-
ating system. The initialization step time (Appendix C)
was 0.03 ms. The figures show that the computations are
fast, despite involving an optimization step for the fu-
sion. The most expensive step was the calculation of η̄,
mainly due to the computation of eigenvalues and ma-
trix multiplications. The off-line computations totaled
623.46 ms, out of which 609.26 ms were spent on the
reachability (W (κ)) and 14.19 ms on the remaining ma-
trices and scalars (Eq. 20 and the ones in Appendix C).

Remark 11 Qualitatively comparing with Brunner
et al. (2019), the issue of eventually triggering always
when ε = 0 also happens with θ = 1 and γ = 1 in their
STC. In this setting, one would achieve UGAS of the
minimal robustly positive invariant subset associated
with periodic control with disturbances. Increasing θ and
γ enlarges the terminal set, in a similar way ε > 0 does.
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6 Conclusions

We presented a self-triggered strategy for output-feedback
control of linear systems subject to bounded disturbances
and noise, named PSTC. It is, to our knowledge, the first
self-triggered implementation of such a general control
structure, improving the results and broadening the ap-
plicability of Gleizer and Mazo Jr (2018). We first proved
that the introduction of noise or mixed triggering does
not hinder stability of neither PETC nor PSTC, then
developed an algorithm that uses set-based methods for
a viable self-triggered implementation. PSTC achieves
virtually the same control performance as PETC, with
slightly smaller inter-sample times. It is expected to be
fast enough for most applications, as each step CPU time
averaged 1 ms for the simulated four-state plant; and
it scales well with the state-space dimension, since the
few online optimization and line search operations are
done on scalars, while higher-dimension computations
are handled with simple linear algebra.

PSTC was developed for linear plants with linear con-
trollers, which presents a limitation to its applicability.
Some classes of nonlinearities could be handled by consid-
ering them as disturbances; since we assume that they are
bounded, one would have to determine a compact set on
which the states lie in order to compute the proper bounds.
For locally linearizable systems, other types of unknown-
but-bounded uncertainty descriptions are more suitable,
such as parametric model uncertainty. In this case, the
ellipsoidal estimator in El Ghaoui and Calafiore (2001)
could be used as a starting point. There are also oppor-
tunities for improving the PSTC performance for linear
systems. Aiming at a small computation complexity, we
chose ellipsoids as set descriptors and devised simple up-
per bounds to the solution of online non-convex QCQP
problems; however, these choices probably bring addi-
tional conservatism and hence increased communication
frequency. From our simulations, this seems to be partic-
ularly relevant when the state approaches the origin and
when disturbances are significantly smaller than their es-
timated bounds. A few alternatives might reduce conser-
vativeness: for example, (constrained) zonotopes (Scott
et al., 2016) could replace ellipsoids; note, however, that
this would require reformulating the optimization prob-
lem. Another possibility would be deriving tighter bounds
for the non-convex QCQP. Finally, the methods proposed
in this paper are not restricted to STC. For example, we
are extending this work to ETC communication schedul-
ing, by employing the PSTC algorithm as a generator of
triggering times’ lower bounds.
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Kurzhanskĭı, A. B. and Vályi, I. (1997). Ellipsoidal cal-
culus for estimation and control. Birkhäuser.
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A Proof of Lemma 1

Before approaching the proof, one remark must be made:
system (15) is equipped with a timer, with jumps only
occurring after a certain time; this specializes it to what
is defined in (Nešić et al., 2013, Section 5) as a sys-
tem with average dwell time, with N = 1, δ = 1/h, and
ζ arbitrarily small. This actually relaxes the Lyapunov
stability conditions presented therein (Nešić et al., 2013,
Proposition 2). Theorem 2 of Nešić et al. (2013) states
that homogeneous systems with average dwell time sat-
isfy Theorem 1 with ψ = χ. Remark 16 of Nešić et al.
(2013) argues that the same Propositions that build the
proof of (Nešić et al., 2013, Theorem 2) can be derived
with ψ 6= χ. Thus, the timer does not play a significant
role in our proofs; as an additional benefit, the results
without timer can be applied to continuous ETC.

For analysis purposes, even though ε is a design param-
eter, we can treat it as a disturbance on the jump set.
With that, let n := np + nc + nu + ny and the col-
lected vector of exogenous signals dT :=

[
wT vT ε

]
, giv-

ing nd := nw + ny + 1. The flow sets are C = Rn and
C0 = Rn+nd , and the jump sets are

D1 = {x ∈ Rn, [wT vT ε]T∈ Rnd :

(F̄ x+ Ḡv)TQ̄(F̄ x+ Ḡv) ≥ ε2},
(A.1)

D2 = {x ∈ Rn, [wT vT ε]T∈ Rnd :

(F̄ x+ Ḡv)TQ̄(F̄ x+ Ḡv) ≤ ε2},
(A.2)

and their projections with d = 0 are

D10 = {x ∈ Rn : xTF̄TQ̄F̄ x ≥ 0},
D20 = {x ∈ Rn : xTF̄TQ̄F̄ x ≤ 0}.

Since sets Di0 are conic and the flow and jump maps in
(15) are linear, properties (6) and (7) hold; also, condi-

tion (8a) is trivially satisfied because C and C0 are the
entire Euclidean space.

What remains to be verified is condition (8b). Note that
the only components of d that enter the jump sets are v
and ε. Rewriting the set sum on the LHS of (8b) gives

Di0+LDB(|d|) = {x′+x′′ : x′ ∈ Di0,x′′ ∈ LDB(|d|)}
= {x : (x− x′′)TF̄TQ̄F̄ (x− x′′) ∼i 0,

x′′
T
x′′ ≤ L2

D(vTv + ε2)},

where ∼1 is ≥ and ∼2 is ≤. Thus, (8b) can be restated as

∀x ∈ Rn,v ∈ Rnv, ε ∈ R : (F̄ x+Ḡv)TQ̄(F̄ x+Ḡv) ∼i ε2,
∃x′′ ∈ Rn : (x− x′′)TF̄TQ̄F̄ (x− x′′) ∼i 0,

x′′
T
x′′ ≤ L2

D(vTv + ε2). (A.3)

Since the pair (Ap,Cp) is observable, we can assume sys-
tem (9) is in its canonical observable form; thus, taking
Cp = [I 0], we can partition F̄ as

F̄ =

 I 0 0 0 0
Dc 0 Cc 0 0
0 0 0 I 0
0 0 0 0 I

 =
[
Ḡ H̄

]
,

where xT is partitioned accordingly as
[
yT x̄T

]
, with x̄

containing all the remaining state components, obtaining
F̄ x = Ḡy + H̄x̄. We now divide the proof in two parts:
i = 1 and i = 2.

To show (A.3) for i = 1, let us construct one x′′ that

satisfies it for every x,v, ε : take x′′
T

=
[
−vT 0

]
. Then

obviously x′′
T
x′′ = vTv ≤ L2

D(vTv+ ε2) with LD = 1 and

(x−x′′)TF̄TQ̄F̄ (x−x′′) = (F̄ (x−x′′))TQ̄F̄ (x−x′′)

=

(
F̄

[
y + v
x̄

])T

Q̄

(
F̄

[
y + v
x̄

])
= (Ḡ(y + v) + H̄x̄)TQ̄(Ḡ(y + v) + H̄x̄)

= (F̄ x+ Ḡv)TQ̄(F̄ x+ Ḡv) ≥ ε2 ≥ 0.

Showing (A.3) for i = 2 is slightly more involved. First,
notice the following fact:

λmin(F̄TQ̄F̄ ) < 0. (A.4)

This is true because xTF̄TQ̄F̄ x is just another represen-
tation of the triggering function (14b); thus, it can be
expressed as |z − ẑ|2 − σ2|z|2 for some z, ẑ ∈ Rny+nu .
This expression is negative if, e.g., z = ẑ 6= 0.

Again, let us construct one x′′ that satisfies (A.3) for

every x,v, ε. This is x′′
T

=
[
−vT 0

]
+ qT, where q is

the vector along the eigendirection corresponding to
λmin(F̄TQ̄F̄ ), i.e. , F̄TQ̄F̄ q = λmin(F̄TQ̄F̄ )q, satisfying

(Ḡ(y + v) + H̄x̄)TQ̄F̄ q ≥ 0, (A.5)

|q|2 =
∣∣λmin(F̄TQ̄F̄ )

∣∣−1
ε2. (A.6)
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One can always find such q: (A.6) determines its norm;
and, if (A.5) is not satisfied, −q satisfies it. This gives

qTF̄TQ̄F̄ q =
λmin(F̄TQ̄F̄ )∣∣λmin(F̄TQ̄F̄ )

∣∣ε2 = −ε2, (A.7)

where the negative sign comes from Eq. (A.4). Therefore,
the second inequality in (A.3) satisfies

(x− x′′)TF̄TQ̄F̄ (x− x′′)
= (Ḡ(y + v) + H̄x̄)TQ̄(Ḡ(y + v) + H̄x̄)

− 2(Ḡ(y + v) + H̄x̄)TQ̄F̄ q + qTF̄TQ̄F̄ q

(A.2)

≤ ε2 − 2(Ḡ(y + v) + H̄x̄)TQ̄F̄ q + qTF̄TQ̄F̄ q

(A.5),(A.7)

≤ ε2 − ε2 = 0.

Additionally, the norm of x′′ satisfies

|x′′| ≤ |v|+|q| = |v|+
∣∣∣λmin(F̄TQ̄F̄ )−

1
2

∣∣∣ |ε| ≤ L(|v|+|ε|),

for L := max
(

1,
∣∣λmin(F̄TQ̄F̄ )

∣∣− 1
2

)
. Now, it is easy to

see that
(|v|+ |ε|)2 ≤ 2vTv + 2ε2.

Hence, x′′
T
x′′ ≤ L2

D(vTv+ε2) holds with LD =
√

2L. 2

B Proof of Theorem 3

First, we introduce the following Lemma:

Lemma 2 Let M ∈ Sn+. Then, for any x ∈ Rn such
that x ∈ E(0,M), there exist a vector s with |s| ≤ 1 and
a matrix S such that x = Ss and SST = M .

PROOF. SinceM is symmetric, it admits the singular
value decomposition

M = UT

[
D 0
0 0

]
U ,

with U invertible and D ∈ S++ diagonal. From Defini-
tion 7, it must hold that, for all l ∈ Rn,

lTx ≤ (lTMl)1/2 =

(
lTUT

[
D 0
0 0

]
Ul

)1/2

. (B.1)

Take l′ := Ul and s′ := U−Tx. Then, (B.1) becomes

l′
T
s′ ≤

(
l′
T
[
D 0
0 0

]
l′
)1/2

= (l′1
T
Dl′1)1/2, (B.2)

where l′ is partitioned into
[
l′1

T
l′2

T
]T

according to [D 0
0 0 ].

Likewise, partition s′ into
[
s′1

T
s′2

T
]T
. Then, (B.2) be-

comes
l′1

T
s′1 + l′2

T
s′2 ≤ (l′1

T
Dl′1)1/2,

which, to hold for all l′1 andl′2, requires that s′2 = 0.

As l′1
T
s′1 ≤ (l′1

T
Dl′1)1/2 is the definition of the ellipsoid

E(0,D), we also conclude that s′1
T
D−1s′1 ≤ 1. Finally,

the choice s = D−1/2s′1 satisfies sTs ≤ 1. Moreover,

U−Tx =

[
s′1
s′2

]
=

[
D1/2

0

]
s ⇐⇒ x = UT

[
D1/2

0

]
s,

so, S = UT

[
D1/2

0

]
gives x = Ss and SST = M . 2

With the result above, the following Lemma introduces
some useful bounds:

Lemma 3 Let Mi ∈ Sn+, i ∈ {1, 2}, p ∈ Rm,F ∈
Rn×m, and Q ∈ Sn. For any xi ∈ Rn such that xi ∈
E(0,Mi), the following inequalities hold:

pTFxi ≤
√
pTFMiFTp, (B.3a)

xTiQxi ≤ λmax(MiQ), (B.3b)

xT1Fx2 ≤
√
λmax(FM2FTM1). (B.3c)

PROOF. Using Lemma 2, take si,Si satisfying
SiS

T
i = Mi and xi = Sisi such that |si| ≤ 1. Thus,

pTFxi = pTFSisi ≤
∣∣pTFSi∣∣; xTiQxi = sTiS

T
iQSisi ≤

λmax(ST
iQSi); and xT1Fx2 = sT1S

T
1FS2s2 ≤ |ST

1FS2| =√
λmax(ST

1FS2ST
2F

TS1). Using the fact that λ(AB) =
λ(BA) for any A,B ∈ Rn×n and replacing SiS

T
i with

Mi provides (B.3). 2

Now we can proceed to the proof of Theorem 3:

PROOF. Let e := xp − x̃p. Hence,

p = p̃+ [eT 0 0]T (B.4)

and, from (19d), eTX−1e ≤ 1. Rewrite Eq. (19a) as a
function of p̃, e,d, and v′ by replacing z′, z and p from
Eqs. (19b), (19c) and (B.4):

η(z′, z) = η′(κ, p̃, e,v′,d) =(
p̃+

[
e
0
0

])T
Q(κ)

(
p̃+

[
e
0
0

])
+

2

(
p̃+

[
e
0
0

])T
Fv(κ)v′ + 2

(
p̃+

[
e
0
0

])T
Fw(κ)d+

2v′
T
CT

vQ̄Cwd+ v′
T
Qvv

′ + dTQwd,

Which results in

η′(κ, p̃, e,v′,d) = p̃TQ(κ)p̃+ 2p̃TQ(κ)|•,Ne
+ eTQ(κ)|N ,Ne+ 2p̃TFv(κ)v′ + 2eTFv(κ)|N ,•v′

+ 2p̃TFw(κ)d+ 2eTFw(κ)|N ,•d
+ 2v′

T
CT

vQ̄Cwd+ v′
T
Qvv

′ + dTQwd. (B.5)
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Now Lemma 3 is used. The only known term in Eq. (B.5)
is the first. Eq. (B.3a) is used for second, fourth and
sixth terms; Eq. (B.3b) for the third, ninth and tenth; and
Eq. (B.3c) for the fifth, seventh and eighth terms. Mere
replacement provides η̄(κ, p̃,X). 2

C Observer Initialization

For Assumption 4 to hold, we need to construct a bounded
set X̃ containing the initial state. Fortunately, this can
be achieved for our class of systems in a finite number of
steps, as detailed in this Section. During these first few
steps, the PSTC must trigger periodically with κ∗ = 1.
The construction of X̃ requires the following:

Assumption 5 The matrix Φp(1) is invertible and the
pair (Φp(1),Cp) is observable.

This is not a limiting assumption: one can always find h
such that Φp(1) = eAph is invertible. 12 Likewise, since
the pair (Ap,Cp) is observable, so is (Φp(1),Cp) with the
proper selection of h. 13 For compactness of expressions,
denote Φp(1) as Φp and Γp(1) as Γp throughout the rest
of this Appendix.

Instead of following the standard recursive GSE, which
would require Minkowski sums of unbounded sets, 14 we
collect sets relating the current state to each specific mea-
surement up to a certain instant, then compute an inter-
section outer-approximation. Let O(k) be the observabil-
ity matrix for k + 1 instants:

O(k) :=


Cp

CpΦp

...
CpΦ

k
p

 .
Denote k̄ := infk∈N0

rank(O(k)) = np. This is the num-
ber of steps needed to reconstruct the initial state on linear
systems. We will see that it is also the minimum number
of steps for getting a bounded set estimate from measure-
ments with bounded noise. For now, denote δ(k1, k2) :=∫ hk2
hk1

eAp(hk2−s)Eω(s)ds as the contribution of distur-

bances to state from k1 to k2, and let ψ̃(k, k̄) := ψ(hk) +

Cp

∑k̄−1
j=k Φ

k−1−j
p Γpυ̂(hj) be the prediction of the output

at time k̄ from the output at k and inputs from k to k̄−1.
The following holds:

12 For h = 0, eAph = I; from continuity, eAph ≈ I for small
enough values of h, hence it is invertible.
13 See (Gopal, 1993, Sec. 6.8) for the pathological selections
of h for which it does not hold.
14 There are tools for that, but it is both unnecessary and
computationally inefficient to do so. During the initializa-
tion, the STC has to trigger periodically, hence there is no
advantage in keeping track of the best state estimate.

Lemma 4 Consider system (9),(13) with b = k (peri-
odic triggering), and let Assumption 4 hold. Then, for all
k ≤ k̄,

CpΦ
k−k̄
p ξp(hk̄) ∈ E(ψ̃(k, k̄),V ) +CpΦ

k−k̄
p X̃w(k̄ − k).

PROOF. We can assess the contribution of the infor-
mationψ(hk), k ≤ k̄ to the instant k̄ in a similar manner
to Eq.(18):

ξp(hk̄) = Φk̄−kp ξp(hk) +

k̄−1∑
j=k

Φk̄−1−j
p Γpυ̂(hj) + δ(k, k̄),

which implies, if Φp is invertible,

CpΦ
k−k̄
p ξp(hk̄) = Cpξp(hk)

+Cp

k̄−1∑
j=k

Φk−1−j
p Γpυ̂(hj) +CpΦ

k−k̄
p δ(k, k̄). (C.1)

Since Cpξp(hk) = ψ(hk)−ν(hk), it belongs to the input
uncertainty set E(ψ(kh),V ), which after summing with

the contribution from inputs Cp

∑k̄−1
j=k Φ

k−1−j
p Γpυ̂(hj)

yields E(ψ̃(k, k̄),V ). The remaining term is the contribu-
tion from disturbances after k̄−k steps, which belongs to
X̃w(k̄−k), followed by the linear transformation through

CpΦ
k−k̄
p . 2

Denote the outer-approximation (Eq. 11) of the

Minkowski sum in Lemma 4 as E(ψ̃(k, k̄),Ṽ (k)). From

Definition 8, if CpΦ
k−k̄
p ξp(hk̄) ∈ E(ψ̃(k, k̄),Ṽ (k)), then

ξp(hk̄) ∈ C(ψ̃(k, k̄),Ṽ (k),CpΦ
k−k̄
p ) = X̃ (k̄|k). That

is, we have found the elliptical cylinder that contains
ξp(hk̄) given information at k. Since this is true for all
k ∈ {0, 1, ..k̄}, we have that

ξp(hk̄) ∈
k≤k̄⋂
k=0

X̃ (k̄|k). (C.2)

An ellipsoidal outer-approximation of this intersection
of elliptical cylinders can be derived with the following:

Lemma 5 Let Ci ∈ Rm×n,Mi ∈ Sn++,yi ∈ Rm, i ∈
{1, ..., q}. Denote C̄ := [CT

1 CT
2 · · · CT

q ] and assume

rank(C̄) = n. Denote ȳT := [yT1 yT2 · · · yTq ] and

M̄ :=


1
µ1
M1 0 · · · 0

0 1
µ2
M2 · · · 0

...
...

. . .
...

0 0 · · · 1
µq
Mq

 ,
with

∑q
i=1 µi = 1. Then,

∩iC(yi,Mi,Ci) ⊆ E(C̄†ȳ, C̄†M̄C̄†T).

13



PROOF. The intersection means that (Cix−yi)TM−1
i (Cix−

yi) ≤ 1 for all i; thus, it holds that
∑q
i=1 λi(Cix −

yi)
TM−1

i (Cix − yi) ≤
∑q
i=1 λi for any λi > 0. Divide

both sides by
∑q
i=1 λi and denote µi = λi/(

∑q
i=1 λi).

Putting in matrix form,

(C̄x− ȳ)T


µ1M

−1
1 0 · · · 0

0 µ2M
−1
2 · · · 0

...
...

. . .
...

0 0 · · · µqM−1
q

 (C̄x− ȳ) ≤ 1.

The middle matrix is M̄−1. Hence, C̄x ∈ E(ȳ,M̄).
Since C̄ is full rank, then mq ≥ n, which implies that
C̄†C̄ = I. Therefore, x = C̄†C̄x ∈ C̄†E(ȳ,M̄). Fi-
nally, applying the linear transformation on the latter
ellipsoid gives x ∈ E(C̄†ȳ, C̄†M̄C̄†T). 2

Finally, using the fact that O(k̄) is full-rank, we apply
Lemma 5 with µi = k̄ + 1 to Eq. (C.2), obtaining the
main initialization step:

Theorem 4 Let Ō(k̄) := O(k̄)Φ−k̄p and

ψ̄(k̄)T :=
[
ψ̃(0, k̄)T ψ̃(1, k̄)T · · · ψ(k̄)T

]
,

V̄ (k̄) :=


(k̄ + 1)Ṽ (0) 0 · · · 0

0 (k̄ + 1)Ṽ (1) · · · 0
...

...
. . .

...

0 0 · · · (k̄ + 1)Ṽ (k̄)

 .
Then ξp(hk̄) ∈ E

(
Ō(k̄)†ψ̄(k̄), Ō(k̄)†V̄ (k̄)Ō(k̄)†T

)
.

Matrices Ō(k̄)†, V̄ (k̄), Ō(k̄)†V̄ (k̄)Ō(k̄)†T and Φ−kp , k ∈
{1, ..., k̄} can be computed off-line. On-line, ψ̃(k, k̄) are
calculated and, at k = k̄, the center of the state estimate
X̃ , Ō(k̄)†ψ̄(k̄) is computed. The main loop with Algo-
rithm 1 then follows.
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