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Abstract—In this work, we propose a region-based self-
triggered control (STC) scheme for nonlinear systems. The state
space is partitioned into a finite number of regions, each of which
is associated to a uniform inter-event time. The controller, at each
sampling time instant, checks to which region does the current
state belong, and correspondingly decides the next sampling time
instant. To derive the regions along with their corresponding
inter-event times, we use approximations of isochronous mani-
folds, a notion firstly introduced in [1]. This work addresses some
theoretical issues of [1] and proposes an effective computational
approach that generates approximations of isochronous mani-
folds, thus enabling the region-based STC scheme. The efficiency
of both our theoretical results and the proposed algorithm are
demonstrated through simulation examples.

I. INTRODUCTION

Control laws are, most often, implemented in a periodic
fashion. However, despite periodic implementations facili-
tating controller design, they lead to overconsumption of
available resources. Especially in Networked Control Systems
(NCS) such implementations are considered inefficient, due to
potential limitations on communication bandwidth. The need
for resource-friendly control implementations has shifted the
research focus to aperiodic schemes, namely Event-Triggered
Control (ETC) [2]–[9] and Self-Triggered Control (STC) [1],
[10]–[21]. For an introduction to STC and ETC see [22].

These strategies assume sample-and-hold implementations,
in which the control action is updated when a certain
performance-related condition (triggering condition) is satis-
fied. Triggering conditions are of the form φ(ζ(t)) ≥ 0, where
φ(ζ(t)) is a function of the state of the system, namely the
triggering function, e.g. see [4], [6]. Specifically in ETC, ded-
icated intelligent hardware constantly monitors the plant and
detects when the triggering condition is satisfied. To relax this
constraint, researchers have proposed STC as an alternative,
according to which the controller predicts at each sampling
time instant the next time at which the triggering condition
would be satisfied. In this way, both ETC and STC promise
to reduce the number of communication packets’ transmissions
and controller updates, thus saving both bandwidth and energy.

Regarding STC for nonlinear systems, the amount of pub-
lished work is limited. In [11] the authors derive STC formulas
employing interesting properties of homogeneous systems.
Based on these properties, a different STC formula is proposed
in [1], employing the notion of isochronous manifolds. In
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[12], a Taylor expansion of the Lyapunov function is used to
predict the triggering times. In [16] a self-triggered scheme is
derived, based on a small-gain approach. In [13] a triggering
condition that guarantees uniform ultimate boundedness for
perturbed nonlinear systems is presented, and a corresponding
self-triggered sampler is derived. Finally, the work in [21]
designs an STC scheme that copes with actuator delays.

The STC formula proposed in [11] proves to be conser-
vative, i.e. it leads to a large amount of updates, at least
when compared to the technique proposed here. This argument
is illustrated in one of the simulation examples later in the
document. What is more, the authors of [21] admit that,
although it addresses actuator delays, it is even more conserva-
tive than [11]. Regarding [1] there are certain theoretical and
practical issues, which are presented later in the introduction
and are thoroughly discussed in this document. An important
drawback of the rest of the STC techniques is that they require
heavy computations that need to be carried out online.

A clever way to provide a trade-off between online compu-
tations and the number of updates in STC has already been
proposed for linear systems with state feedback in [18]. In
particular, the authors in [18] discretize the state space of
a linear system into a finite number of regions, assigning a
particular self-triggered inter-event time to each region that
lower bounds the event-triggered inter-event times of all points
contained in that region. The computation of the self-triggered
inter-event time for each region is carried out offline. Finally,
in real-time the controller checks to which region of the state
space does the current state belong and assigns to it the inter-
event time of the corresponding region. To the best of our
knowledge, there are no similar results for nonlinear systems.

Motivated by the advantages of [18], in this work we
derive a region-based STC scheme for nonlinear systems. In
contrast to [18], in which the state space is firstly discretized
and afterwards the corresponding self-triggered inter-event
times are computed, we propose to firstly predefine a set of
specific inter-event times and afterwards derive the regions
that correspond to the selected times. Thus, in our approach
the number of regions in the state space is always equal to the
number of times. This renders our approach more efficient and
tames the curse of dimensionality, as the number of regions is
independent of the dimensions of the system.

Towards discretizing the state space of nonlinear systems,
we elaborate on the notion of isochronous manifolds, originally
introduced in [1]. Isochronous manifolds are hypersurfaces in
the state space, that consist of points associated to the same
inter-event time τ , i.e. if the system’s state belongs to an
isochronous manifold at a sampling time ti, then the next
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sampling time instant is ti+1 = ti + τ . In [1], the authors
propose a method to approximate these manifolds by upper-
bounding the evolution of the triggering function, and then use
the approximations to derive an STC formula. Unfortunately,
there are some unaddressed theoretical and practical issues
therein, which render the approximations, in general, invalid
and hinder the application of the corresponding STC scheme.
In particular, the bounding lemma presented in [1] (Lemma
V.2 in [1]), based on which the upper-bounds of the triggering
function are derived, is incorrect. Furthermore, we show that,
even if a valid bound is obtained, the method proposed in
[1] actually approximates the zero-level sets of the triggering
function, and not the actual isochronous manifolds. Finally,
although the authors in [1] propose the use of SOSTOOLS
[23] to derive the approximations, we have found it to be nu-
merically non-robust regarding solving this particular problem.

This paper tackles all of the aforementioned issues, in order
to derive a discretization of the state space for nonlinear
systems that enables a region-based STC scheme. Overall, the
contributions of our work are the following:

• We present a valid version of the bounding lemma, based
on a higher order comparison lemma [24].

• Employing this new lemma, we propose a refined
methodology to approximate the actual isochronous man-
ifolds of nonlinear ETC systems.

• We adjust a counter-example guided iterative method
(see e.g. [25]) combining Linear Programming and SMT
(Satisfiability Modulo Theory) solvers (e.g. [26]), to
derive an alternative algorithm that effectively computes
approximations of isochronous manifolds.

• We derive a novel region-based STC scheme that provides
a framework to trade-off online computational load with
the number of updates.

Finally, it is worth noting that isochronous manifolds are an
inherent characteristic of any system with an output. Thus, as
in [1], the theoretical contribution of deriving approximations
of isochronous manifolds might even exceed the context in
which this paper is written.

II. NOTATION AND PRELIMINARIES

A. Notation

We denote points in Rn as x and their Euclidean norm as
|x|. We use the symbol ∃!, to denote existence and uniqueness.
For x, y ∈ Rn, we write x � y if xi ≤ yi (i = 1, . . . , n), where
the subscript i denotes the i-th component of the corresponding
vector. When there is no harm from ambiguity, the subscript
i may be, also, used to denote different points xi ∈ Rn.

If f : Rn → Rm is p-times continuously differentiable,
we write f ∈ Cp. Let X : M → TM be a vector
field and h : M → R a map. LXh(x) denotes the Lie
derivative of h at a point x along the flow of X . Similarly,
LkXh(x) = LX(Lk−1

X h(x)) is the k-th Lie derivative with
L0
Xh(x) = h(x).
Consider a system of first order differential equations:

ζ̇(t) = f(t, ζ(t)). (1)

The solution of (1) with initial condition ζ0 and initial time t0
is denoted as ζ(t; t0, ζ0). When t0 (and ζ0) is clear from the
context, then it is omitted, i.e. we write ζ(t; ζ0) (ζ(t)).

B. Event-Triggered Control Systems
Consider a nonlinear control system:

ζ̇(t) = f(ζ(t), υ(ζ(t))), (2)

where ζ : R → Rn, f : Rn × Rm → Rn, and a feedback
control law υ : Rn → Rm. A sample-and-hold implementation
of (2) is typically applied by sampling the state of the system
ζ(t) at time instants ti, i = 0, 1, 2, ..., evaluating the input
υ(ζ(ti)) and keeping it constant until the next sampling time:

ζ̇(t) = f(ζ(t), υ(ζ(ti))), t ∈ [ti, ti+1).

We define the measurement error ε(t) as the difference be-
tween the last measured state and the current state:

ε(t) := ζ(ti)− ζ(t), t ∈ [ti, ti+1). (3)

As soon as the updated control input is applied at each
sampling time t = ti, the state is measured and the error
becomes 0, since ζ(t) = ζ(ti). With this definition, the
sample-and-hold closed loop becomes:

ζ̇(t) = f(ζ(t), υ(ε(t) + ζ(t))). (4)

In ETC the sampling time instants, or triggering times, are
defined as follows:

ti+1 = ti + inf{t > 0 : φ(ζ(t;xi), ε(t; 0)) = 0} (5)

and t0 = 0, where xi corresponds to the last measurement
of the state of the plant. We call (5) the triggering condition,
φ(·, ·) the triggering function, and the difference ti+1−ti inter-
event time. Each point xi in the state space of the system,
corresponds to a specific inter-event time denoted by τ(xi):

τ(xi) := inf{t > 0 : φ(ζ(t;xi), ε(t; 0)) = 0}. (6)

During the interval [ti, ti+1), the triggering function starts
from a negative value and remains negative until ti+1. At
ti+1 it becomes zero. Typically, it is designed such that
φ(ζ(t;xi), ε(t; 0)) ≤ 0 implies certain stability guarantees for
the system. This justifies the choice (5) of sampling times.

If we consider the extended state vector
ξ(t) =

[
ζ>(t) ε>(t)

]>∈ R2n, the ETC system is written in
a compact way:

ξ̇(t) =

[
f(ζ(t), υ(ζ(t) + ε(t))
−f(ζ(t), υ(ζ(t) + ε(t))

]
= F (ξ(t)), t ∈ [ti, ti+1),

ξ1(t+i+1) = ξ1(t−i+1),

ξ2(t+i+1) = 0.
(7)

Remark 1. Our analysis is carried out within the time interval
[0, ti+1−ti) = [0, τ(xi)). Due to time-invariance of F (·), φ(·),
this is equivalent to analyzing within the interval [ti, ti+1).

At any sampling time ti, the state of (7) becomes ξ(ti) =
(ζ(ti), 0) = (xi, 0). Since we consider intervals between
two sampling times, we focus on solutions ξ(t; ξi) with
ξi = (xi, 0). Thus, we adopt the abusive notation φ(ξ(t;xi)),
τ(xi) (or later ψ(xi, t), µ(xi, t)) instead of φ(ξ(t; ξi)), τ(ξi).
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C. Self-Triggered Implementation

As aforementioned, self-triggered implementations remove
the need for continuous monitoring of the triggering condition
(5), by predicting events φ(ξ(t;x)) = 0. Specifically, an STC
strategy dictates the next sampling time according to a function
τ↓ : Rn → R+ lower-bounding the ETC inter-event times:

τ↓(x) ≤ τ(x). (8)

Since φ(ξ(t;x)) < 0 for all t ∈ [0, τ(x)), then it is guaranteed
that φ(ξ(t;x)) < 0 for all t ∈ [0, τ↓(x)), and the stability of
the system is preserved. Consequently, the STC inter-event
times should be no larger than the corresponding ETC times
in order to guarantee stability, but as large as possible in order
to achieve greater reduction of updates. Finally, τ↓(·) should
be designed such that τ↓(x) ≥ ε > 0 for all x in the operating
region of the system, in order to avoid the scenario of infinite
transmissions in finite amount of time (Zeno phenomenon).

III. PROBLEM STATEMENT

Inspired by [18], the goal of this paper is to design a
region-based STC scheme for nonlinear systems, providing
a framework for trade-off between online computations and
updates. In a region-based STC scheme, the state-space of the
original system (4) is divided into a finite number of regions
Ri ∈ Rn (i = 1, 2, . . . ), each of which is associated to a
self-triggered inter-event time τi such that:

∀x ∈ Ri : τi ≤ τ(x), (9)

where τ(x) denotes the event-triggered inter-event time asso-
ciated to x (see (6)). The STC scheme operates as follows:

1) Measure the current state ξ(tk) = (xk, 0).
2) Check to which of the regions Ri does xk belong.
3) If xk ∈ Ri, set the next sampling time to tk+1 = tk+τi.

The STC scheme preserves stability of the system, since the
STC inter-event times lower bound the ETC ones (see (9)).

In [18] the state-space is discretized into regions Ri a-
priori, and afterwards the times τi are computed such that
they satisfy (9). However, we propose an alternative approach:
firstly a finite set of times {τ1, τ2, . . . τq} is predefined (e.g.
by the user), which will serve as STC inter-event times, with
τi < τi+1, and then regions Ri corresponding to times τi
are derived a-posteriori, such that (9) is satisfied. In this way,
the number of regions is equal to the number of times τi,
in contrast to [18], and the curse of dimensionality is tamed,
as the number of regions does not depend on the system’s
dimensionality. Thus, the problem statement is as follows:

Problem Statement. Given a finite set of times {τ1, . . . τq},
with τi < τi+1 and q > 1, find Ri ∈ Rn that satisfy (9).

Note that Zeno behaviour is ruled out by construction,
since the STC inter-event times are lower bounded: τ↓(x) ≥
mini{τi} = τ1. The choice of times τi and its effect is
discussed later in the document.

IV. ISOCHRONOUS MANIFOLDS, TRIGGERING LEVEL
SETS AND DISCRETIZATION

Here, we recall results from [1] regarding isochronous
manifolds, we introduce the notion of triggering level sets and
describe how isochronous manifolds and triggering level sets
are different. Finally, we point out how, given proper approxi-
mations of isochronous manifolds, a state-space discretization
state space is generated, enabling a region-based STC scheme.

A. Homogeneous Systems and Scaling of Inter-Event Times

First, we briefly go through some definitions regarding
homogeneous functions and systems, and results previously
derived in [11] regarding scaling laws for inter-event times
of homogeneous systems. Regarding the former, only the
classical notion of homogeneity is presented. For the general
definition of homogeneity, the reader is referred to [27].

Definition IV.1 (Homogeneous Function [1]). A function f :
Rn → Rm is homogeneous of degree α ∈ N, if there exist
ri > 0 (i = 1, 2, . . . ,m) such that for all x ∈ Rn:

fi(λ
r1x1, . . . , λ

rnxn) = λα+rifi(x1, . . . , xn), ∀λ > 0,

where fi(x) is the i-th component of f(x) and α > −mini ri.

Definition IV.2 (Homogeneous System). A system (2) is called
homogeneous of degree α ∈ R, whenever f(ζ(t), υ(ζ(t))) =
f̃(ζ(t)) is a homogeneous function of the same degree.

We now review the scaling laws of inter-event times previ-
ously derived in [11]. Along lines passing through the origin
(but excluding the origin) the event-triggered inter-event times
scale according to the following rule:

Theorem IV.1 (Scaling Law [11]). Consider a dynamical
system (7) homogeneous of degree α and a triggering function
φ(·) homogeneous of degree θ. For all x ∈ Rn, the inter-event
times τ : Rn → R+ ∪ {+∞} defined by (6) scale as:

τ(λx) = λ−ατ(x), λ > 0. (10)

In the following, we refer to lines going through the origin
as homogeneous rays. Notice that the scaling law for the inter-
event times (10) does not depend on the degree of homogeneity
of the triggering function considered. The property derives
from the following useful lemma:

Lemma IV.2 (Time-Scaling Property [11]). Consider an ETC
system (7) and a triggering function φ(·) homogeneous of
degree α and θ, respectively. The triggering function satisfies:

φ(ξ(t;λx)) = φ(λξ(λαt;x)) = λθ+1φ(ξ(λαt;x)), (11)

where the first equality is a property of homogeneous flows.

Assumption 1. For the remaining of the paper, our analysis
is based on the following set of assumptions:
• The extended ETC system (7) is smooth and homogeneous

of degree α ≥ 1, with ri = 1 for all i.
• The triggering function φ(ξ(t;x)) is smooth and homo-

geneous of degree θ ≥ 1, with ri = 1 for all i.
• For all x ∈ Rn−{0}, φ(ξ(0;x)) < 0 and ∃tx ∈ (0,+∞)

such that φ(ξ(tx;x)) = 0.
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• Compact sets Z ⊂ Rn and Ξ ⊂ R2n, containing a
neighbourhood of the origin, are given, such that for all
x ∈ Z: φ(ξ(t;x)) ≤ 0 =⇒ ξ(t;x) ∈ Ξ.

• The system (2) has the origin as the only equilibrium.

Remark 2. The aforementioned analysis and Assumption 1
constitute the framework within which this work is carried out.
Nevertheless, as pointed out in [1] (Lemma IV.4 therein), any
smooth function can be rendered homogeneous, if embedded in
a higher dimensional space. Thus, our results are applicable
to general smooth nonlinear systems and triggering functions.
This is thoroughly discussed in Appendix D and showcased in
Section VII.B via a numerical example.

Remark 3. The set Ξ could be Ξ = Z × E, where Z =
{x ∈ Rn : V (x) ≤ c}, E = {x0 − x ∈ Rn : x, x0 ∈ Z},
c > 0, and V (·) is a radially unbounded Lyapunov function
for the ETC system. In most ETC schemes (e.g. [4]), V (x)
is given and the triggering function satisfies: φ(ξ(t;x)) ≤
0 =⇒ V̇ (ζ(t;x)) ≤ 0. Thus, trajectories of (7) starting from
Z × {0} ⊂ Ξ stay in Ξ = Z × E. The intuition behind this
assumption is analyzed in Section V.C. An alternative way of
constructing Z and Ξ is demonstrated in Section VII.B.

B. Isochronous Manifolds and Triggering level Sets

Definition IV.3 (Isochronous Manifolds). Consider a closed
loop system (7) and a triggering function φ(·). The set Mτ? =
{x ∈ Rn : τ(x) = τ?}, where τ(x) is defined by (6), is called
an isochronous manifold of time τ?.

Alternatively, all points x ∈ Rn which correspond to
inter-event time τ? constitute the isochronous manifold Mτ? .
Isochronous manifolds are of dimension n−1 (proven in [1]).

Definition IV.4 (Triggering Level Sets). We call the set:

Lτ? := {x ∈ Rn : φ(ξ(τ?;x)) = 0} (12)

triggering level set of φ(ξ(τ?;x)) for time τ?.

Triggering level sets are the zero-level sets of the triggering
function, for fixed t. Let us now make a crucial observation:
The equation φ(ξ(t;x)) = 0 may have multiple solutions with
respect to time t for a given x. In other words, there might exist
points x ∈ Rn and time instants τx,1 < τx,2 < ... < τx,k, with
k > 1 such that φ(ξ(τx,i;x)) = 0 for all i = 1, 2, ..., k. We
briefly present an example with a triggering function exhibiting
multiple zero-crossings for given initial conditions:

Example: Consider the jet-engine compressor control sys-
tem from [28]:

ξ̇1(t) = −ξ2(t)− 3

2
ξ2
1(t)− 1

2
ξ3
1(t), ξ̇2(t) = υ(ξ(t)),

with control law υ(ξ(t)) = ξ1(t)− 1
2 (ξ2

1(t) + 1)(y+ ξ2
1(t)y+

ξ1(t)y2) + 2ξ1(t), where y = 2
ξ21+ξ2
ξ21+1

. A triggering function
that guarantees asymptotic stability is the following [11]:

φ(ξ(t;x)) = |ε|2−0.82σ2|ξ(t;x)|2, σ ∈ (0, 1).

The evolution of the triggering function φ(ξ(t;x)) for the
initial condition [−0.5 − 1]> is simulated and illustrated in

0 10 20 30
-1

-0.5

0

Fig. 1: The time evolution of φ(x; t) for initial condition
[−0.5,−1]>. It exhibits multiple zero-crossings.

Fig. 1. It is clear from the figure that it exhibits multiple zero-
crossings, for t = τx,1 ≈ 1.15s and t = τx,2 ≈ 3.22s. �

Inter-event times are defined as the first zero-crossing of
the triggering function (see (6)), i.e. τ(x) = τx,1. Isochronous
manifolds are defined with respect to this first zero-crossing,
and any point x ∈ Rn−{0} belongs only to one isochronous
manifold: Mτx,1 . However, the same point belongs to all trig-
gering level sets Lτx,i . For instance, in the previous example,
the point x = (−0.5,−1) belongs to both triggering level sets
L1.15 and L3.22, whereas it belongs to only one isochronous
manifold, i.e. M1.15. In [1], isochronous manifolds and trig-
gering level sets are treated as if they were identical, which
creates problems regarding approximating isochronous mani-
folds. This is addressed later in the document.

Remark 4. If the triggering function φ(ξ(t;x)) has only one
zero-crossing for all x ∈ Rn − {0}, then the triggering level
sets do coincide with the isochronous manifolds, i.e. Mτ? =
{x ∈ Rn : τ(x) = τ?} = {x ∈ Rn : φ(ξ(τ?;x)) = 0} = Lτ? .

Isochronous manifolds possess the two following properties:

Proposition IV.1 ([1]). Consider an ETC system (7), a
triggering function φ(·), and let Assumption 1 hold. Each
homogeneous ray intersects any isochronous manifold only at
one point:

∀τ? > 0 and ∀x ∈ Rn−{0} : ∃!λx > 0 such that λxx ∈Mτ?

(13)

Proof. According to (10) and (11), on any homogeneous ray,
times vary from 0 to +∞ as λx varies from +∞ to 0. Thus,
for any τ? ∈ R+ there exists a point x on each ray such that
τ(x) = τ?. What is more, equation (10) implies that there do
not exist two different points on the same homogeneous ray
that correspond to the same inter-event time.

Proposition IV.2. Consider an ETC system (7), a trig-
gering function φ(·), and let Assumption 1 hold. Consider
isochronous manifolds Mτi and Mτi+1

, with τi < τi+1. The
following holds for all x ∈Mτi :

∃!λx ∈ (0, 1) s.t. λxx ∈Mτi+1
∧ 6∃ κx ≥ 1 s.t. κxx ∈Mτi+1

.
(14)

Proof. According to Proposition IV.1, since each homoge-
neous ray intersects any isochronous manifold only at one
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point, ∃!λx > 0 such that λxx ∈ Mτi+1
, where x ∈ Mτi .

From the scaling law (10) we get:

τi+1 = τ(λxx) = λ−αx τi =⇒ λx = α

√
( τi
τi+1

) < 1,

since τi < τi+1. There can be no other intersection of the
homogeneous ray with Mτi+1

, i.e. 6∃ κx ≥ 1 s.t. κxx ∈Mτi+1
.

Proposition IV.2 states that isochronous manifolds for
smaller times are further away from the origin. Given (13), in
Fig. 2 the curve on the top could be an isochronous manifold of
a homogeneous system, while the two bottom curves cannot.

Fig. 2: The curve on the top is intersected only once by each
homogeneous ray, thus it could be an isochronous manifold of
a homogeneous system. The two bottom curves are intersected
by some homogeneous rays more than once, thus they cannot
be isochronous manifolds of a homogeneous system.

Remark 5. Properties (13) and (14) of isochronous manifolds
result directly from the time scaling property (11).

C. State-Space Discretization and a Self-Triggered Strategy

For the following, we assume that the system operates in an
arbitrarily large compact set B the whole time. Assume that
isochronous manifolds Mτi for τ1 < τ2 < τ3 are given, as
illustrated in Fig. 3. We define the regions between manifolds
as:

Ri = {x ∈ Rn :∃κx ≥ 1 s.t. κxx ∈Mτi∧
∃λx ∈ (0, 1) s.t. λxx ∈Mτi+1}

(15)

for τi < τi+1, and the region enclosed by the manifold Mτ3 as
R3 = {x ∈ Rn : ∃κx ≥ 1 s.t. kxx ∈ Mτ3}. Since (14) holds,
a region Ri is the set with its outer boundary being Mτi and
its inner boundary being Mτi+1

. The scaling law (10) implies

Fig. 3: Isochronous manifolds Mτ1 , Mτ2 , Mτ3 (red lines) for
τ1 < τ2 < τ3, and the operating region B (black line).

that: τ(x) ≥ τi for all x ∈ Ri. Thus, isochronous manifolds

could be employed for discretizing the state space in regions
Ri such that (9) is satisfied. If isochronous manifolds did not
satisfy property (13), then the regions Ri could potentially
intersect with each other (see Fig. 4). Hence, it would not be
possible to derive a discretization as the one described.

Fig. 4: If isochronous manifolds did not satisfy (13), it would
not be possible to discretize the state space enabling a region-
based STC scheme.

D. Inner-Approximations of Isochronous Manifolds and Dis-
cretization

Deriving the actual isochronous manifolds is generally not
possible, as nonlinear systems most often do not admit a
closed-form analytical solution. Thus, in order to discretize
the state space and generate a region-based STC scheme,
we propose a method to construct inner-approximations of
isochronous manifolds, as shown in Fig. 5.

Definition IV.5 (Inner-Approximations of Isochronous Mani-
folds). Consider a system (7) and a triggering function, and let
Assumption 1 hold. A set Mτi

is called inner approximation of
an isochronous manifold Mτi if and only if for all x ∈Mτi :

∃κx ≥ 1 s.t. κxx ∈Mτi and 6∃ λx ∈ (0, 1) s.t. λxx ∈Mτi .
(16)

Fig. 5: Isochronous manifolds Mτi (dashed lines), and their
inner-approximations Mτi (solid lines). The filled region rep-
resents R1.

In other words, an inner-approximation of an isochronous
manifold is contained inside the region encompassed by the
isochronous manifold. Consider inner-approximations Mτi

of
isochronous manifolds (τ1 < τ2 < ...), that satisfy properties
(13) and (14). We consider the regions between sets Mτi :

Ri = {x ∈ Rn :∃κx ≥ 1 s.t. κxx ∈Mτi
∧

∃λx ∈ (0, 1) s.t. λxx ∈Mτi+1
}.

(17)

A region Ri is the set with its outer boundary being Mτi and
its inner boundary being Mτi+1

(see Fig. 5). For such sets, by
(10) we get the following result:
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Corollary IV.1. Consider a system (7) and a triggering
function φ(·), and let Assumption 1 hold. Consider two inner-
approximations Mτi and Mτi+1

of isochronous manifolds,
with τi ≤ τi+1. Assume that Mτi

and Mτi+1
satisfy (13) and

(14). For the region Ri defined in (17), the following holds:

∀x ∈ Ri : τi ≤ τ(x).

Proof. For all x ∈ Ri, ∃κx ≥ 1 s.t. κxx ∈Mτi
. Thus, ∃kx ≥

κx ≥ 1 s.t. kxx ∈ Mτi . By (10), we have τ(kxx) = τi =⇒
τ(x) = kαx τi ≥ τi.

Thus, given inner-approximations of isochronous manifolds,
the state space can be discretized into regions Ri, enabling
the region-based STC scheme. This construction requires that
inner approximations should also satisfy (13) and (14). Deriv-
ing inner-approximations Mτ?

of isochronous manifolds such
that they satisfy (13) and (14) constitutes the main theoretical
challenge of this work.

Remark 6. As already noted, the number of regionsRi equals
the number q of predefined times τi (see Section III). Given
that τ1 and τq are fixed, as the number of times q grows,
the areas of regions Ri become smaller, as the same space is
discretized into more regions. Thus, the STC inter-event times
τi become more accurate bounds of the actual ETC times τ(x).
However, during the online implementation, the controller in
general needs to perform more checks to determine the region
of a measured state. Hence, the number q of times τi provides
a trade-off between computations and conservativeness.

Remark 7. Note that τ1 has to be selected, such that the
operating region B lies completely inside the region delimited
by Mτ1

(e.g. see Fig. 3). To check this, the approach of [11]
or an SMT (Satisfiability Modulo Theory) solver (e.g. [26])
can be used.

Remark 8. For non-homogeneous systems, there will always
exist a neighbourhood around the origin that cannot be
contained in any region Ri. However, this set can be made
arbitrarily small, by selecting a sufficiently small time τ1. For a
thorough discussion on this, the reader is referred to Appendix
D.

V. APPROXIMATIONS OF ISOCHRONOUS MANIFOLDS

Here a refined methodology is presented, which generates
inner-approximations of isochronous manifolds that satisfy
(13) and (14). First, we show how the method of [1] actually
approximates triggering level sets, and then we refine its core
idea to derive approximations of isochronous manifolds.

A. Approximations of Triggering Level Sets

The method proposed in [1] is based on bounding the
time evolution of the triggering function by another function
with linear dynamics: ψ1(x, t) ≥ φ(ξ(t;x)), with ψ1(x, 0) =
φ(ξ(0;x)) < 0 for all x ∈ Rn−{0}. The bound is obtained by
constructing a linear system according to a bounding lemma
(Lemma V.2 in [1]). Unfortunately, this lemma is invalid and
the function that is obtained does not always bound φ(ξ(t;x)).
Specifically, a counterexample is given in [29] (pp.2 Example

2). However, later in the document we present a slightly
adjusted lemma, that is actually valid. Thus, for this subsection
we assume that ψ1(x, t) is an upper bound of φ(ξ(t;x)).

Since ψ1(x, t) ≥ φ(ξ(t;x)) and ψ1(x, 0) < 0, if we define:

τ↓(x) = inf{t > 0 : ψ1(x, t) = 0},

then it is guaranteed that φ(ξ(x; t)) ≤ 0, ∀t ∈ [0, τ↓(x)].
Hence, the first zero-crossing of ψ1(x, t) for a given x happens
before the first zero-crossing of φ(ξ(t;x)), i.e. the inter-event
time of x is lower bounded by τ↓(x): τ(x) ≥ τ↓(x).

In [1], under the misconception that isochronous manifolds
and triggering level sets coincide, it is argued that to approx-
imate an isochronous manifold, it suffices to approximate the
set Lτ? := {x ∈ Rn : φ(ξ(τ?;x)) = 0}, i.e. a triggering
level set. Thus, the upper bound ψ1(x, t) of φ(ξ(t;x)) is used
to derive the following approximation: Lτ? := {x ∈ Rn :
ψ1(x, τ?) = 0}. However, as we have already pointed out for
the triggering function, ψ1(x, t) might also have multiple zero-
crossings for a given x ∈ Rn. Thus, the equation ψ1(x, t) = 0
does not only capture the inter-event times of points x, but
possibly also more zero-crossings of φ(t;x). Thus, we can say
that the set Lτ? is an approximation of the triggering level set
Lτ? , and not of the isochronous manifold Mτ? . Furthermore,
observe that ψ1(x, t) does not a-priori satisfy the time scaling
property (11). Consequently, there is no formal guarantee that
the sets Lτ? satisfy (13) (see Remark 5). In other words, the
sets Lτ? might be intersected by some homogeneous rays more
than once, or they may not be intersected at all.

Remark 9. In [1], given a fixed time τ?, the equation

ψ1(x0

λ , τ?) = 0 (18)

is solved w.r.t. λ, in order to determine the STC inter-event time
of the measured state x0 as: τ↓(x0) = λ−ατ?. Note that (18)
finds intersections x0

λ of Lτ? with the ray passing through x0.
Hence, the above observations imply that (18) may not have
any real solution, or may admit some solutions λ such that
τ↓(x0) = λ−ατ? > τ(x), hindering stability.

B. Inner-Approximations of Isochronous Manifolds

Although, the method of [1] generates approximations of
triggering level sets, which do not satisfy (13), we employ
the idea of upper-bounding the triggering function, and we
impose additional properties to the upper bound, such that the
obtained sets approximate isochronous manifolds and satisfy
(13) and (14). Remarks 4 and 5 state that: 1) isochronous
manifolds coincide with triggering level sets, if φ(·) has only
one zero-crossing w.r.t. t, and 2) φ(·) satisfying (11) implies
that isochronous manifolds satisfy (13) and (14). Intuitively,
we could construct a function µ(x, t) that satisfies the same
properties and its zero-crossing happens before the one of φ(·),
and use the level sets Mτ?

= {x ∈ Rn : µ(x, τ?) = 0} as inner
approximations of isochronous manifolds that satisfy (13) and
(14). The above are summarized in the following theorem:
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Theorem V.1. Consider an ETC system (7), a triggering
function φ(·), and let Assumption 1 hold. Let µ : Rn×R+ → R
be a function that satisfies:

µ(x, 0) < 0, ∀x ∈ Rn − {0}, (19a)
µ(x, t) ≥ φ(ξ(t;x)), ∀t ∈ [0, τ(x)] and ∀x ∈ Rn − {0},

(19b)

µ(λx, t) = λθ+1µ(x, λαt), ∀t, λ > 0 and ∀x ∈ Rn − {0},
(19c)

∀x ∈ Rn − {0} : ∃! τx such that µ(x, τx) = 0. (19d)

The sets Mτ? = {x ∈ Rn : µ(x, τ?) = 0} are inner-
approximations of isochronous manifolds Mτ? and satisfy (13)
and (14).

Proof. See Appendix.

Remark 10. It is crucial that inequality (19b) extends at least
until τ(x), in order for µ(x, t) to capture the actual inter-event
time, i.e. for the minimum time satisfying µ(x, t) = 0 to lower
bound the minimum time satisfying φ(ξ(t;x)) = 0.

C. Constructing the Upper Bound of the Triggering Function

In this subsection, we construct a valid bounding lemma
and we employ it in order to derive an upper bound µ(x, t) of
the triggering function φ(ξ(t;x)), such that it satisfies (19).

Lemma V.2. Consider a system of differential equations
ξ̇(t) = F (ξ(t)), where ξ : R+ → Rn, F : Rn → Rn, a
function φ : Rn → R and a set Ωd = {x ∈ Rn : |x|< d}. For
every set of coefficients δ0, δ1, ..., δp ∈ R+ satisfying:

LpFφ(z) ≤
p−1∑
i=0

δiLiFφ(z) + δp, ∀z ∈ Ωd, (20)

the following inequality holds for all ξ0 ∈ Ωd:

φ(ξ(t; ξ0)) ≤ ψ1(y(ξ0), t) ∀t ∈ [0, τξ0),

where τξ0 is defined as:

τξ0 = sup{τ > 0 : ξ(t; ξ0) ∈ Ωd, ∀t ∈ [0, τ)} (21)

and ψ1(y(ξ0), t) is the first component of the solution of the
following linear dynamical system:

ψ̇ =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

0 0 0 . . . 1 0
δ0 δ1 δ2 . . . δp−1 1
0 0 0 . . . 0 0


ψ = Aψ, (22)

with initial condition:

y(ξ0) =
[
φ(ξ0) LFφ(ξ0) . . . Lp−1

F φ(ξ0) δp
]>
.

Proof. See Appendix.

Remark 11. The main difference between Lemma V.2 and the
bounding lemma in [1] is that in Lemma V.2 the coefficients δi

are forced to be non-negative. We also include a proof, employ-
ing a higher-order comparison lemma, since the comparison
lemma arguments used in the proof of [1] are invalid.

Let us define the open ball:

Ωd := {x ∈ R2n : |x|< d}. (23)

Consider the following feasibility problem:

Problem 1. Consider a system (7) and a triggering function
φ(·) and let Assumption 1 hold. Find δ0, . . . , δp ∈ R such that:

LpFφ(z) ≤
p−1∑
i=0

δiLiFφ(z) + δp, ∀z ∈ Ωd, (24a)

δ0φ
(

(x, 0)
)

+ δp ≥ ε > 0, ∀x ∈ Z, (24b)

δi ≥ 0, i = 0, 1, . . . , p, (24c)

where ε is an arbitrary predefined positive constant, d is such
that Ξ ⊂ Ωd, and Z, Ξ and Ωd are given by Assumption 1
and (23) respectively.

The feasible solutions of (24) belong in a subset of the
feasible solutions of Lemma V.2, i.e. the solutions of (24)
determine upper bounds of the triggering function. Moreover,
such δi always exist, since to satisfy (24) it suffices to pick
δp ≥ max{ε, sup

z∈Ωd

LpFφ(z)} and δi = 0 for i = 0, . . . , p −

1. The following theorem shows how to employ solutions of
Problem 1, in order to construct upper bounds that satisfy (19).

Theorem V.3. Consider a system (7), a triggering function
φ(·), and coefficients δ0, . . . , δp solving Problem 1. Let As-
sumption 1 hold. Let D = {x ∈ Rn : |x|= r}, with r > 0 and
D ⊂ Z. Define the following function for all x ∈ Rn − {0}:

µ(x, t) := C( |x|r )θ+1eA(
|x|
r )αt



φ
(

(r x
|x| , 0)

)
max

(
Lfφ

(
(r x
|x| , 0)

)
, 0

)
...

max

(
Lp−1
f φ

(
(r x
|x| , 0)

)
, 0

)
δp


(25)

where A is as in (22), C = [1 0 . . . 0], and α and θ are
the degrees of homogeneity of the system and the triggering
function, respectively. The function µ(x, t) satisfies (19).

Proof. See Appendix.

Thus, according to Theorem V.1, the sets Mτ? = {x ∈
Rn : µ(x, τ?) = 0} are inner-approximations of the actual
isochronous manifolds of the system and satisfy (13) and (14).
The fact that µ(x, t) satisfies (19) directly implies that the
region Ri between two approximations Mτi

and Mτi+1
(τi <

τi+1) can be defined as:

Ri := {x ∈ Rn : µ(x, τi) ≤ 0 ∧ µ(x, τi+1) > 0}. (26)

To determine online to which region does the measured state
belong, the controller checks inequalities like the ones in (26).
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Let us explain the importance of Z, Ξ from Assumption 1.
By solving Problem 1, an upper bound ψ(ξ0, t) is determined
according to Lemma V.2 that bounds φ(ξ(t; ξ0)) as follows:

ψ(ξ0, t) ≥ φ(ξ(t; ξ0)), ∀ξ0 ∈ Ωd and ∀t ∈ [0, τξ0),

where τξ0 is the time when the trajectory ξ(t; ξ0) leaves Ωd
(see (21)). What is needed is to bound φ(ξ(t; ξ0)) at least until

Fig. 6: The sets Z× {0} ⊂ Ξ ⊂ Ωd.

the inter-event time τ(ξ0) (see Remark 9), i.e. τ(ξ0) < τξ0 .
This is exactly what Assumption 1 offers: trajectories starting
from points ξ0 ∈ Z× {0} stay in Ξ ⊂ Ωd at least until τ(ξ0)
(see Figure 6). In other words, for all points ξ0 ∈ Z×{0}, we
have that τ(ξ0) < τξ0 (since Ξ ⊂ Ωd) and therefore:

ψ(ξ0, t) ≥ φ(ξ(t; ξ0)), ∀ξ0 ∈ Z× {0} and ∀t ∈ [0, τ(ξ0)].
(27)

Regarding the {0}-part of Z×{0}, note that we only consider
initial conditions ξ0 = (x, 0), as aforementioned. Finally,
transforming ψ(x, t) into µ(x, t) by incorporating properties
(19c) and (19d), equation (27) becomes (19b). All these
statements are formally proven in the Appendix.

VI. AN ALGORITHM THAT DERIVES UPPER BOUNDS

Although in [1] SOSTOOLS [23] is proposed for deriving
the δi coefficients, our experience indicates that it is numeri-
cally non-robust regarding solving this particular problem. We
present an alternative approach based on a Counter-Example
Guided Iterative Algorithm (see e.g. [25]), which combines
Linear Programming and SMT solvers (e.g. [26]), i.e. tools
that verify or disprove first-order logic formulas, like (24).

Consider the following problem formulation:

Problem. Find a vector of parameters ∆ such that:

G(x) ·∆ ≤ b(x), ∀x ∈ Ω, (28)

where ∆ ∈ Rp, G : Rn → Rm×p, b : Rn → Rm and Ω is a
compact subset of Rn.

For the initialization of the algorithm, a finite subset Ω̂
consisting of samples xi from the set Ω is obtained. Notice
that the relation: G(xi) · ∆ ≤ b(xi), ∀xi ∈ Ω̂ can be
formulated as a linear inequality constraint: Â · ∆ ≤ b̂,
where Â =

[
G>(x1) G>(x2) . . . G>(xi) . . .

]>
and

b̂ =
[
b(x1) b(x2) . . . b(xi) . . .

]>
, ∀xi ∈ Ω̂. Each

iteration of the algorithm consists of the following steps:
1) Obtain a candidate solution ∆̂ by solving the following

linear program (LP):

minimize c>∆, subject to Â ·∆ ≤ b̂,

where c can be freely chosen by the user (we discuss
meaningful choices later).

2) Employing an SMT solver, check if the candidate solu-
tion ∆̂ satisfies the inequality on the original domain,
i.e. if G(x) · ∆̂ ≤ b(x), ∀x ∈ Ω:

a) If ∆̂ satisfies (28), then the algorithm terminates
and returns ∆̂ as the solution.

b) If ∆̂ does not satisfy (28), the SMT solver returns
a point xc ∈ Ω where this inequality is violated,
i.e. a counter-example. Add xc to Ω̂ and update
accordingly the matrices Â and b̂. Go to step 1.

Note that in step 2b) a single constraint is added to the LP
of the previous step, i.e. G(xc) ·∆ ≤ b(xc), by concatenating
G(xc) and b(xc) to the Â and b̂ matrices, respectively.

In order to solve Problem 1 in particular, we define ∆ =[
δ0 δ1 . . . δp

]>
, b(·) =

[
−LpFφ(z) −ε . . . 0

]>
and:

G(·) =



−φ(z) . . . −Lp−1
F φ(z) −1

−φ(ξ(0;x0)) 0 . . . −1
−1 0 . . . 0
0 −1 . . . 0

0 0
. . . 0

0 0 . . . −1


,

where z ∈ Ωd and x0 ∈ Z, with Ωd and Z as in (23) and
Assumption 1 respectively. Hence, the set Ω̂ consists of points
Xi = (zi, x0i) ∈ Ωd × Z, and after solving the corresponding
LP, the SMT solver checks if G(X)·∆̂ ≤ b(X), ∀X ∈ Ωd×Z.
Finally, intuitively, tighter estimates of LpFφ(z) could be
obtained by minimizing δp, and using the other LiFφ(z) terms
in the right hand side of (20). Hence, c =

[
0 . . . 0 1

]
constitutes a wise choice for the LP. In the following section,
numerical examples demonstrate the algorithm’s efficiency,
alongside the validity of our theoretical results.

Remark 12. It is recommended that the parameter d, which
determines the size of Ωd, is chosen relatively small, in order to
help the algorithm terminate faster. Moreover, our experiments
indicate that just 2 initial samples xi ∈ Ω̂ are sufficient
for the algorithm to terminate relatively quickly. Intuitively,
this is because letting the algorithm determine most of the
samples itself (by finding the counter-example points) is more
efficient than dictating samples a-priori. Finally, p should
be chosen large enough so that the obtained bound µ(·, ·)
is tight, but also small enough so that the dimensionality
of the feasibility problem remains small. According to our
experience, a choice of 2 ≤ p ≤ 4 leads to satisfactory results
and quick termination of the algorithm, in most cases.

VII. SIMULATION RESULTS

In the following numerical examples SOSTOOLS failed to
derive upper bounds, as it mistakenly reasoned that Problem 1
is infeasible. The upper bounds were derived by the algorithm
proposed above.

A. Homogeneous System

In this example, we compare the region-based STC with the
STC technique of [11] (which is also computationally light)
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and with ETC (which constitutes the ideal scenario). Consider
the following homogeneous control system:

ζ̇1 = ζ3
1 + ζ1ζ

2
2 , ζ̇2 = ζ1ζ

2
2 − ζ2

1ζ2 + υ, (29)

with υ(ζ) = −ζ3
2 − ζ1ζ2

2 . A homogeneous triggering function
for an asymptotically stable ETC implementation is:

φ(ξ(t;x)) = |ε(t;x)|2−0.01272σ2|ζ(t;x)|2, σ ∈ (0, 1),

where ξ(·) denotes the trajectories of the corresponding ex-
tended system (7), ε(·) is the measurement error (3), and x is
the previously sampled state. As in [1], we select σ = 0.3.

In order to test the proposed region-based STC scheme,
Problem 1 is solved by employing the algorithm presented in
the previous section. In particular, we set p = 3, Ωd = {x ∈
R4 : |x|< 0.9} and Ξ = Z×E, where Z = {x ∈ R2 : V (x) ≤
0.1}, E = {x0−x ∈ R2 : x, x0 ∈ Z} and V (x) = 1

2x
2
1 + 1

2x
2
2

is a Lyapunov function for the system. Observe that Ξ ⊂ Ωd.
The coefficients found are δ0 = 0, δ1 = 0.1272, δ2 = 0 and
δ3 = 0.0191. In order to construct µ(x, t) according to (25),
we fix r = 0.29 and the set D = {x ∈ R2 : |x|= r} indeed
lies in the interior of Z. The state space is discretized into
348 regions Ri with corresponding self-triggered inter-event
times τ348 = 0.1s and τi = 1.01−2τi+1. Indicatively, 4 derived
approximations of isochronous manifolds are shown in Fig. 7.
Observe that the approximations satisfy (13) and (14).

-0.8 0 0.8

-0.8

0.8

Fig. 7: Approximations of isochronous manifolds of the ETC
implementation of (29).

The system is initiated at x = [1, 1]> and the simulation
lasts for 5s. Fig. 8 compares the time evolution of the inter-
event times of the region-based STC, the STC proposed in
[11] and ETC. In total, ETC triggered 383 times, the region-
based STC triggered 554 times, whereas the STC of [11]
triggered 2082 times. Given Fig. 8 and the number of total
updates for each technique we can conclude that: 1) the region-
based STC scheme highly outperforms the STC of [11] and
2) the performance of the region-based STC scheme follows
closely the ideal performance of ETC, while reducing the
computational load in the controller.

B. Non-Homogeneous System

Consider the forced Van der Pol oscillator:

ζ̇1(t) = ζ2(t), ζ̇2(t) = (1−ζ2
1 (t))ζ2(t)−ζ1(t)+υ(t), (30)

0 1 2 3 4 5
Time(s)

0.00

0.01

0.02

0.03

0.04

In
te
r-e

ve
nt
 T
im
e(
s)

ETC updates
Region-Based STC updates
STC [11] updates

Fig. 8: The time evolution of region-based STC, STC of [11]
and ETC inter-event times along the trajectory of (29).

with υ(t) = −ζ2(t) − (1 − ζ2
1 (t))ζ2(t). Assuming an ETC

implementation, and homogenizing the system with an auxil-
liary variable w, according to the procedure presented in [1]
(Lemma IV.4 therein), the extended system (7) becomes:

ξ̇ =


ξ2w

2

(w2 − ξ2
1)ξ2 − ξ1w2 − ε2w2 − (w2 − ε21)ε2

0
−ξ2w2

−(w2 − ξ2
1)ξ2 + ξ1w

2 + ε2w
2 + (w2 − ε21)ε2

0

 (31)

where ξ = [ζ1, ζ2, w, ε1, ε2, εw]>, εi = ξi + εi, with ε being
the measurement error (3). The homogeneity degree of the
extended system is α = 2. Observe that the trajectories of the
original system (30) coincide with the trajectories of (31), if
the inital condition for w is w0 = 1. A triggering function
based on the approach of [4] has been obtained in [30]:

φ(ζ(t;x), ε(t; 0)) = φ(ξ(t;x,w0)) = W (|ε|)− V (ξ1, ξ2),

where W (|ε|) = 2.222(ε2
1 + ε2

2) and V (ξ1, ξ2) =
0.0058679ξ2

1 + 0.0040791ξ1ξ2 + 0.0063682ξ2
2 is a Lyapunov

function for the original system. Note, that φ(ξ(t;x,w0)) is
already homogeneous of degree 1. We fix Z = [−0.01, 0.01]3

and define the following sets:

Φ =
⋃

x0∈[−0.01,0.01]2

{x ∈ R2 : W (|x0 − x|)− V (x1, x2) ≤ 0},

E = {x0 − x ∈ R2 : x0 ∈ [−0.01, 0.01]2, x ∈ Φ},
Ξ = Φ× [−0.01, 0.01]× E× {0}.

Notice that Φ is exactly such that for all x0 ∈ [−0.01, 0.01]2:
φ(ξ(t;x0, w0)) ≤ 0 =⇒ ζ(t;x0) ∈ Φ. Then, from the
definition of E and the observation that w remains constant at
all time, it is easily verified that Z and Ξ are compact, contain
the origin and satisfy the requirement of Assumption 1.

Let us compare the region-based STC to the ideal perfor-
mance of ETC. Solving Problem 1 for p = 3, we obtain δ0 =
δ3 ≈ 0, δ1 ≈ 5 · 10−7 and δ2 ≈ 0.00181. To obtain µ(x,w, t)
as in (25), we fix r = 0.09 and D = {x ∈ R3 : |x|= r}
indeed lies in the interior of Z. The state space is discretized
into 126 regions Ri, with τ126 = 0.01s and τi = 1.05−2 ·τi+1.
The system is initiated at x = [−0.3, 1.7]>, and the simulation
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duration is 5s. In total, the ETC implementation triggered 114
times, whereas the region-based STC implementation triggered
1448 times, which implies that in this particular example
the region-based STC is conservative. Intuitively, the root of
conservativeness is the fact that µ(x,w, t) is now derived to
bound the evolution of φ(ξ(t;x,w)) along the trajectories of
the extended system (31) in R3, whereas we only care about
the trajectories on the plane w = 1.

Figures 9 and 10 demonstrate the evolution of the sampling
times of region-based STC and ETC, respectively, along the
trajectory. In particular, the curve on the x1 − x2 plane is
the trajectory of the system, while the 3D curve above the
trajectory is the value of the inter-event time of the corre-
sponding point on the trajectory. The direction of the trajectory
is from the blue-colored points to the red-colored points. In
Fig. 9 the intervals for which the inter-event time remains
constant correspond to segments of the trajectory in which
the state vector lies inside one particular region Ri. First,

x1

−0.20.00.20.40.60.8

x2

−0.5
0.0

0.5
1.0

1.5

STC Inter-event Tim
es

0.000

0.001

0.002

0.003

0.004

Fig. 9: The evolution of region-based STC inter-event times
along the trajectory of the forced Van der Pol oscillator.
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0.04
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Fig. 10: The evolution of ETC inter-event times along the
trajectory of the forced Van der Pol oscillator.

note that in contrast to the previous example, the sampling
times do not increase as the system approaches the origin,
since the system is not homogeneous and the scaling property
(11) does not apply here, i.e. φ(ζ(t;λx)) = φ(ξ(t;λx, 1)) 6=

λθ+1φ(ξ(λαt;x, 1)) = λθ+1φ(ζ(λαt;x)). In fact, as stated in
[1], the scaling law that applies is :

φ(ξ(t;λx, λw)) = λθ+1φ(ξ(λαt;x,w)). (32)

However, the similarity of the two figures indicates that the
sampling times of the region-based STC approximately follow
the trend of the ETC sampling times. This indicates that
the approximations of isochronous manifolds determined by
µ(x,w, t) preserve the spatial characteristics of the actual
isochronous manifolds of (30). Intuitively, the preservation of
the spatial characteristics could be attributed to the fact that
µ(x,w, t) also satisfies (32), which determines the scaling of
the isochronous manifolds of the homogenized system (31)
along its homogeneous rays. Besides, note that the isochronous
manifolds of the original system (30) are the intersections of
the isochronous manifolds of (31) with the w = 1-plane.

Remark 13. This simulation demonstrates that, as mentioned
in Remark 2, the results presented in this work are transferable
to any smooth, not necessarily homogeneous, system.

VIII. CONCLUSION AND FUTURE WORK

In this work, a novel STC policy that enables a trade-off
between online computations and updates was presented. The
simulation results indicate that the scheme performs very well
in the case of homogeneous systems. However, it was also
shown that for non-homogeneous systems the performance
deteriorated. Thus, future research will consider ways of im-
proving the performance for non-homogeneous systems. Fur-
thermore, we aim at addressing perturbed and noisy nonlinear
systems. Finally, the approximations of isochronous manifolds
could be employed to derive a state-space discretization in
accordance to what is proposed in [31], in order to synthesize a
scheduling framework for networks of nonlinear ETC systems.
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APPENDIX

To conduct the proofs of the previously presented lemmas
and theorems, we first introduce some preliminary concepts.

A. Higher Order Differential Inequalities

Definition IX.1 (Type W ∗ functions [24]). The function g :
Rn → R is said to be of type W ∗ on a set S ⊆ Rn if g(x) ≤
g(y) for all x, y ∈ S such that xn = yn, xi ≤ yi (i =
1, 2, ..., n− 1), where xi, yi denote the i-th component of the
x and y vector respectively.

Definition IX.2 (Right maximal solution [24]). Consider the
p-th order differential equation:

u(p)(t) = g(t, u(t), u̇(t), . . . , u(p−1)(t)), (33)
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where u : R+ → R and g(·) is continuous on [0, T ] × Rp. A
solution um(t; t0, Um), where t0 is the initial time instant and
Um ∈ Rp is the vector of initial conditions, is called a right
maximal solution of (33) on an interval [t0, α) ⊂ [0, T ] if

u(i)(t; t0, U0) ≤ u(i)
m (t; t0, Um), t ∈ [t0, α) ∩ [t0, α

∗),

for any other solution u(t; t0, U0) with initial condition U0 �
Um defined on [t0, α

∗), for all i = 0, 1, 2, . . . ,m− 1.

Lemma IX.1 (Higher Order Comparison Lemma [24]). Con-
sider a system of first order differential equations:

ζ̇(t) = f(t, ζ(t)). (34)

Let υ : Dr → R and let υ ∈ Cp, f ∈ Cp−1 on Dr, where
Dr = {(t, x)|0 ≤ t ≤ T < +∞, |x|< r}. Let g(·) of (33) be
of type W ∗ on S ⊆ Rp+1 for each t, where

S =
{(
t, υ(t, ζ(t)), υ̇(t, ζ(t)), . . . ,υ(p−1)(t, ζ(t))

)
|

(t, ζ(t)) ∈ Dr

}
and

υ(i)(t, ζ(t)) =
∂υ(i−1)(t, ζ(t))

∂t
+
∂υ(i−1)(t, ζ(t))

∂ζ(t)
· f(t, ζ(t)).

Assume that:

υ(p)(t, ζ(t)) ≤ g(t, υ(t, ζ(t)), υ̇(t, ζ(t)), . . . , υ(p−1)(t, ζ(t))),

for all (t, ζ(t)) ∈ Dr. Let J denote the maximal interval of
existence of the right maximal solution um(t; 0, Um) of (33).
If υ(i)(0, ζ0) = u

(i)
m (0; 0, Um) (i = 0, 1, 2, . . . , p − 1), where

u
(i)
m (0; 0, Um) are the components of the initial condition Um

of um(t; 0, Um), then:

υ(i)(t, ζ(t; 0, ζ0)) ≤ u(i)
m (t; 0, Um), t ∈ J ∩ [0, T ],

for all i = 0, 1, 2, . . . , p− 1.

B. Monotone Systems

Definition IX.3 (Monotone System [32]). Consider a system:

ζ̇(t) = f(ζ(t)). (35)

The system (35) is called monotone if:
ζ0 � ζ1 =⇒ ζ(t; t0, ζ0) � ζ(t; t0, ζ1).

Proposition IX.1 ([32]). Consider the system (35). If the off-
diagonal entries of the Jacobian ∂f

∂ζ are non-negative, then the
system (35) is monotone.

C. Technical Proofs

Proof of Theorem V.1. Define τ↓(x) = inf{t > 0 : µ(x, t) =
0}. (19d) implies that µ(x, τ↓(x)) = 0 is the only zero-
crossing of µ(x, t) w.r.t. t for any given x. Hence:

Mτ?
= {x ∈ Rn : µ(x, τ?) = 0} = {x ∈ Rn : τ↓(x) = τ?},

Equations (19c) and (19d) imply that Mτ?
satisfies (13) and

(14) (see Remark 5).
It is left to prove that Mτ?

is an inner approximation of
Mτ? . Notice that φ(ξ(τ(x);x)) = 0 together with (19b) and

(19a), imply that the first zero-crossing of µ(x, t) happens
before the one of the triggering function:

τ↓(x) ≤ τ(x). (36)

Furthermore, (19c) implies that τ↓(x) also satisfies the scaling
law (10) (the proof for this argument is the exact same to
the one derived in [11] for the scaling laws of inter-event
times.) The fact that both τ↓(x) and τ(x) satisfy (10), i.e.
they are strictly decreasing functions along homogeneous rays,
alongside (36) implies that: τ(x1) = τ↓(x2) = τ? =⇒ |x1|≥
|x2|, for all x1,x2 on a homogeneous ray. Thus, since Mτ?
satisfies (13), we get that for all x ∈Mτ?

:

∃!κx ≥ 1 s.t. κxx ∈Mτi and 6∃ λx ∈ (0, 1) s.t. λxx ∈Mτi .

The proof is now complete.

Proof of Lemma V.2. Introduce the following linear system:

χ̇ =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1
δ0 δ1 δ2 . . . δp−2 δp−1


χ+


0
...
0
δp

 . (37)

Notice that (37) represents the p-th order differential equation
χ(p) =

∑p−1
i=0 δiχ

(i) + δp. The proof makes use of Lemma
IX.1. Using the notation of Lemma IX.1, we identify:

v(t, ξ(t)) ≡ φ(ξ(t)), ∀ξ(t) ∈ Ωd,

f(t, ξ(t)) ≡ F (ξ(t)), ∀ξ(t) ∈ Ωd,

g(t, v, v′, ..., v(p−1)) ≡
p−1∑
i=0

δiv
(i) + δp.

For t > τξ0 , ξ(t; ξ0) may not belong to Ωd. Thus, υ(·) is
well-defined only in the interval [0, τξ0). Since δi ≥ 0 for all i,
g is of type W ∗ in R+×Rp. Moreover, it is clear that v ∈ Cp
and f ∈ Cp−1 on [0, τξ0) × Ωd. Inequality (20) translates to
v(p)(t, z) ≤ g(t, v, v′, ..., v(p−1)) for (t, z) ∈ [0, τξ0)× Ωd.

Furthermore, according to Proposition IX.1, the linear
system (37) is monotone, since all off-diagonal entries
of its jacobian are non-negative (δi ≥ 0 for all i).
This implies that any solution of (37) is a right max-
imal solution, and its maximal interval of existence is
J = [0,+∞). Consider the solution χ(t;X(ξ0)), where
X(ξ0) =

[
φ(ξ0) LFφ(ξ0) . . . Lp−1

F φ(ξ0)
]>

. Observe
that the components of the initial condition X(ξ0) and LiFφ(z)
(i = 0, 1, 2, . . . , p − 1) are equal. All conditions of Lemma
(IX.1) are satisfied. Thus, we can conclude that for all ξ0 ∈ Ωd:

φ(ξ(t; ξ0)) ≤ χ1(t;X(ξ0)), ∀t ∈ [0, τξ0).

Notice that ψ1(y(ξ0), t) = χ1(t;X(ξ0)) for all t. Hence
φ(ξ(t; ξ0)) ≤ ψ1(y(ξ0), t), ∀t ∈ [0, τξ0).

To prove Theorem V.3, we first derive the following results.

Proposition IX.2. Consider coefficients δi (i = 0, 1, ..., p)
solving Problem 1, and define an upper-bound ψ1(x, t) of the
triggering function φ(ξ(t;x)) as dictated in Lemma V.2. Let:

η1(x, t) := CeAtη(x, 0), (38)
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where A is as in (22), C =
[
1 0 . . . 0

]
and:

η(x, 0) :=



φ
(

(x, 0)
)

max

(
Lfφ

(
(x, 0)

)
, 0

)
...

max

(
Lp−1
f φ

(
(x, 0)

)
, 0

)
δp


. (39)

The function η1(x, t) satisfies:

η1(x, t) ≥ φ(ξ(t;x)), ∀t ∈ [0, τ(x)] and ∀x ∈ Z. (40)

Proof. Notice that η1 is the first component of the solution
η(x, t) to the same linear dynamical system (22) as ψ, with
initial condition: ψ(x, 0) � η(x, 0). Since the system (22) is
monotone, according to Proposition IX.1, the following holds:

η1(x, t) ≥ ψ1(x, t) ≥ φ(ξ(t;x)), ∀t ∈ [0, τξ0) and ∀x ∈ Z,

since x ∈ Z =⇒ ξ0 = (x, 0) ∈ Ξ ⊂ Ωd. By the definition of
Ξ in Assumption 1, ξ(t;x) ∈ Ξ for all t ∈ [0, τ(x)]. But τξ0
is defined in (21) as the escape time of ξ(t;x) from Ωd, and
Ξ ⊂ Ωd; i.e. τ(x) < τξ0 . Thus (40) is satisfied.

Proposition IX.3. The function η1(x, t) of (38) is strictly
increasing w.r.t. t for all t > 0.

Proof. In the following η
(i)
1 (x, t) denotes the i-th derivative

of η1(x, t) w.r.t. t. At t = 0, initial condition (39) implies that
η

(i)
1 (x, 0) ≥ 0 for all i = 1, . . . , p− 1. For η(p)

1 (x, 0):

η
(p)
1 (x, 0) =

p−1∑
i=0

δiηi+1(x, 0) + δp ≥ δ0φ
(

(x, 0)
)

+ δp > 0,

since ηi+1(x, 0) ≥ 0 for all i = 0, . . . , p − 1, and (24b) and
(24c) hold. Differentiating η(p)

1 w.r.t. t, we get:

η
(p+1)
1 (x, 0) =

p−1∑
i=0

δiη
(i+1)
1 (x, 0) ≥ 0.

Similarly, η(i)
1 (x, 0) ≥ 0, for all i. Hence η(i)

1 (x, 0) ≥ 0 for all
i ∈ N−{0}, and in particular η(p)

1 (x, 0) > 0. This implies that
the function η1(x, t) is strictly increasing for all t > 0.

We are ready to prove Theorem V.3.

Proof of Theorem V.3. First, notice that µ(x, t) satisfies
(19c), by construction. Let D = {x ∈ Rn : |x|= r},
with r > 0 such that D ⊂ Z. Notice that for x ∈ D:
µ(x, t) = η(x, t). Thus, according to Proposition IX.2 :

µ(x, t) = η1(x, t) ≥ φ(ξ(t;x)), ∀t ∈ [0, τ(x)] and ∀x ∈ D.
(41)

Consider now any x0 ∈ Rn − {0} and a λ > 0 such that
xD = λx0 ∈ D. Employing (19c), (11) and (41) we get:

µ(xD, t) ≥ φ(ξ(t;xD)), ∀t ∈ [0, τ(xD)] ⇐⇒
µ(x0, λ

αt) ≥ φ(ξ(λαt;x0)), ∀t ∈ [0, τ(xD)] ⇐⇒
µ(x0, t) ≥ φ(ξ(t;x0)), ∀x0 ∈ Rn − {0} and t ∈ [0, τ(x0)],

since λατ(xD) = τ(x0). Thus, µ(x, t) satisfies (19b).
It remains to be shown that µ(x, t) satisfies (19d). Notice

that µ(x, 0) = φ
(

(x, 0)
)
< 0 for all x ∈ Rn−{0}. Moreover,

since (19b) holds, we get that:

µ(x, τ(x)) ≥ φ(ξ(τ(x);x)) = 0.

From Assumption 1 we have that such a τ(x) always exists.
Thus, for all x ∈ Rn − {0} there exists τ↓(x) > 0 such that
µ(x, τ↓(x)) = 0. Moreover, since µ(x, t) = η(x, t) for x ∈ D,
then according to Proposition IX.3 µ(x, t) is strictly increasing
w.r.t. t for all t > 0 and for all x ∈ D. Finally, incorporating
(19c) we get that: µ(x, t) is strictly increasing w.r.t. t for all
t > 0 and for all x ∈ Rn − {0}; i.e. τ↓(x) is unique. Thus,
µ(x, t) satisfies (19d).

D. Non-Homogeneous Systems

As stated in Remark 2, in [1] a procedure is proposed that
renders any smooth nonlinear system homogeneous of degree
α > 0, by embedding it to higher dimensions and adding
an extra variable w, with dynamics ẇ = 0. Specifically, a
nonlinear system:

ζ̇(t) = f(ζ(t)), (42)

with ζ(t) ∈ Rn is homogenized as follows:

[
ζ̇(t)
ẇ(t)

]
=


wα+1f1(w−1ζ(t))
wα+1f2(w−1ζ(t))

...
wα+1fn(w−1ζ(t))

0

 = f̃(ζ(t), w(t)). (43)

Likewise, an ETC system (7) is homogenized by introducing
w and the corresponding dummy measurement error εw as:

ξ̇(t) =


ζ̇(t)
ẇ(t)
ε̇ζ(t)
ε̇w(t)

 =


f̃(ζ(t), εz(t), w(t))

0

−f̃(ζ(t), εz(t), w(t))
0

 = F (ξ(t)),

(44)
where f̃(ζ(t), εz(t), w(t)) is obtained as in (43).

An example of the use of the homogenization procedure is
demonstrated in Section VII.B. Similarly, one can homogenize
a non-homogeneous triggering function φ(ζ(t;x0), εζ(t; 0))
as: φ̃(ξ(t;x0, w0)) = wθ+1φ(w−1ζ(t;x0), w−1εζ(t; 0)). Ob-
serve that the trajectories of the original system (42) with
initial condition x ∈ Rn coincide with the ones of (43)
with initial condition (x, 1) ∈ Rn+1, i.e. on the hyperplane
w = 1. Hence, the inter-event times of the original system
τ(x) coincide with the inter-event times τ

(
(x, 1)

)
of (43).

Consequently, in order to apply the proposed region-based
STC scheme to a non-homogeneous nonlinear system, we first
homogenize it by embedding it to Rn+1, and then derive inner-
approximations of isochronous manifolds of the extended
system (43), by replacing x with (x,w) in (25).

However, a technical detail arises that needs to be empha-
sized. Most triggering functions that are designed for asymp-
totic stabilization of the origin (e.g. [4]) satisfy φ

(
(0, 0)

)
= 0.

Thus, deriving the function µ(x,w, t) as in Theorem V.3
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for the extended system (43), results for all points (0, w) ∈
Rn+1 − {0} on the w-axis in:

µ(0, w, t) = C( |w|r )θ+1eA(
|w|
r )αt



0

max

(
Lfφ

(
(0, 0)

)
, 0

)
...

max

(
Lp−1
f φ

(
(0, 0)

)
, 0

)
δp


This implies that for all these points: µ(0, w, t) > 0 for all
t > 0. Hence, the w-axis does not belong to any inner-
approximation Mτ?

= {(x,w) ∈ Rn+1 : µ(x,w, τ?) =
0} of isochronous manifolds. In other words, all inner-
approximations Mτ?

are punctured by the w-axis and obtain
a singularity at the origin, as shown in Fig. 11. Consequently,

-5
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5 10
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5
0

0

-5
-5

-10 -10

Fig. 11: Inner-approximation Mτ?
of isochronous manifolds

of a homogenized system.

given a finite set of times {τ1, . . . , τq}, discretizing the state-
space of the extended system into regions Ri delimited by
inner-approximations Mτi

, will always result in a neighbour-
hood around the w-axis not belonging to any region Ri, as
depicted in Fig. 12. This implies that a neighbourhood around
the origin of the original system (42), which is mapped to
a subset of the hyperplane w = 1 around the w-axis in the
augmented space Rn+1, is not contained to any region Ri.
Thus, no STC inter-event time can be assigned to the points
of this neighbourhood.

Fig. 12: Discretization of the state space of a homogenized
system into regions Ri delimited by inner-approximations
Mτi

(coloured lines) of isochronous manifolds.

However, note that this neighbourhood can be made arbi-
trarily small, by selecting a sufficiently small time τ1 for the
outermost inner-approximation Mτ1

. Thus, in order to apply
the region-based STC scheme in practice, first we make this
neighbourhood arbitrarily small, and then we treat it differently
by associating it to a sampling time that can be designed
e.g. according to periodic sampling techniques that guarantee

stability (e.g. [33]). In the numerical example of Section VII.B
we completely neglect this region, as it was so small that it
wasn’t even reached during the simulation.

Remark 14. Note that, as the w-axis acts as a singularity
for both the isochronous manifolds Mτ? (the actual inter-
event times there are technically 0, and in practice they
could be anything) and their inner-approximations Mτ? , the
inner-approximations might look very different than the actual
manifolds near the w-axis.

Remark 15. The above technical issue does not arise in cases
where φ

(
(0, 0)

)
6= 0. Such an example is the widely used

mixed-triggering function φ(ξ(t)) = |εζ(t)|2−σ|ζ(t)|2−ε2
(e.g. [34]), where σ > 0 is appropriately chosen and ε > 0.
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