SENTIENT Project
Scheduling of EveNt-TrIggerEd coNtrol Tasks

Project funded under the ERC-Starting Grant #755953

The advances in electronic communication and computation have enabled the ubiquity of Cyber-Physical Systems (CPS): digital systems that regulate and control all sorts of physical processes, such as chemical reactors, water distribution and power networks. These systems require the timely communication of sensor measurements and control actions to provide their prescribed functionalities. Event-triggered control (ETC) techniques, which communicate only when needed to enforce performance, have attracted attention as a mean to reduce the communication traffic and save energy on (wireless) networked control systems (NCS). However, despite ETC’s great communication reductions, the scheduling of the aperiodic and largely unpredictable traffic that ETC generates remains widely unaddressed – hindering its true potential for energy and bandwidth savings.
To address this problem, in project the SENTIENT we are investigating the following scientific challenges:
- the construction of models for ETC’s communication traffic;
- the design of schedulers based on such models guaranteeing prescribed performance levels.
To reach these goals, we are employing methods at the cross-roads between theoretical computer science, control systems and communications engineering. We follow a two step approach:
- modeling as timed-priced-game-automata (TPGA) the timing of communications of event-triggered control systems;
- solving games over TPGAs to prevent data communication collisions and ensure prescribed performances for the control tasks.
The project’s most practical objective is to produce algorithms facilitating the efficient implementation of control loops over shared communication resources, and increasing the energy efficiency of wireless NCS.The advances will be demonstrated on automotive and wireless water-distribution control applications, showcasing the potential economic impact from the reduction of implementation and maintenance costs on CPSs.
Publications
Proceedings Articles
Abstracting the Sampling Behaviour of Stochastic Linear Periodic Event-Triggered Control Systems Proceedings Article
In: Proceedings of the 60th IEEE Conference on Decision and Control (CDC 2021), pp. 1287–1294, IEEE, United States, 2021, ISBN: 978-1-6654-3659-5, (60th IEEE Conference on Decision and Control (CDC 2021) ; Conference date: 14-12-2021 Through 17-12-2021).
Generalizing Non-punctuality for Timed Temporal Logic with Freeze Quantifiers Proceedings Article
In: Huisman, Marieke; areanu, Corina Pu; Zhan, Naijun (Ed.): Formal Methods, pp. 182–199, Springer, 2021, ISBN: 978-3-030-90869-0, (24th International Symposium on Formal Methods, FM 2021 ; Conference date: 20-11-2021 Through 26-11-2021).
Self-Triggered Control for Near-Maximal Average Inter-Sample Time Proceedings Article
In: Proceedings of the 60th IEEE Conference on Decision and Control (CDC 2021), pp. 1308–1313, IEEE, Ünited States, 2021, ISBN: 978-1-6654-3659-5, (60th IEEE Conference on Decision and Control (CDC 2021) ; Conference date: 14-12-2021 Through 17-12-2021).
Traffic Abstractions of Nonlinear Homogeneous Event-Triggered Control Systems Proceedings Article
In: Proceedings of the 59th IEEE Conference on Decision and Control, pp. 4991–4998, IEEE, 2020.
Scalable Traffic Models for Scheduling of Linear Periodic Event-Triggered Controllers. Proceedings Article
In: 21st IFAC World Congress : Automatic Control – Meeting Societal Challenges - Berlin, Germany, pp. 2726-2732, IFAC 2020.