Modeling & Control of Hybrid Systems Chapter 1 — Introduction ¹

Manuel Mazo Jr.

Utrecht, May 2nd, 2022

¹Based on the original slides from Bart De Schutter

Outline

- 1 Overview of the course
- 2 Motivating Hybrid Systems
- 3 Hybrid automata
- 4 Examples of hybrid systems
- 5 Examples with Zeno behavior
- 6 Summary

Outline

- 1 Overview of the course
- 2 Motivating Hybrid Systems
- 3 Hybrid automata
- 4 Examples of hybrid systems
- 5 Examples with Zeno behavior
- 6 Summary

General Info

- Lecturers: Manuel Mazo Jr and Romain Postoyan
- Web site:

https://mmazojr.3me.tudelft.nl/teaching/disc_hs/

- Lecture notes: on DISC course folder, linked on course website
- Slides: see website
- Homework: see website (also for deadlines)
- Final grade: average of 3 homework assignments

+ bonus points (by reporting errors)

results will be communicated by end of October 2022

- Email addresses:
 - m.mazo@tudelft.nl
 - romain.postoyan@univ-lorraine.fr

Contents

- Introduction (May 2)
- 2 Models (May 2)
- 3 Dynamics & well-posedness (May 9)
- 4 Stability (May 9 & May 16)
- 5 Switched control (May 16)
- 6 Optimization-based control (May 23)
- 7 Model checking and timed automata (May 23)

Outline

- 1 Overview of the course
- 2 Motivating Hybrid Systems
- 3 Hybrid automata
- 4 Examples of hybrid systems
- 5 Examples with Zeno behavior
- 6 Summary

Control systems meets computing

Cyber

Physical

Control systems meets computing

Cyber

Physical

Control systems meets computing

Cyber-Physical

Control systems meets computing

Cyber-Physical

Modeling & Control of Hybrid Systems

Switching dynamical regimes

- Evolution of rigid bodies, impact dynamics (contact/no contact)
- (Active) Electrical networks (switching, diodes)
- Fermentation process (lag, growth, stationary, inactivation)
- Saturation, hysteresis
- Actuator and sensor failures
- Human intervention in smooth systems
- Switching between dynamical regimes \rightarrow hybrid

A classical example

- Hybrid: combination of continuous and discrete dynamics
- Temperature control system:

Beer brewing

Modeling & Control of Hybrid Systems

Traffic control systems

1 / 71

Traffic control systems

Intersection with traffic signals

- 4 modes, states: queue lengths
- Automatic platooning merging & splitting

Modeling & Control of Hybrid Systems

Examples

Networked Control Systems

Challenges

- Analysis Verification of properties/specifications
- Control Synthesis for prescribed properties
- Traditional approaches:
 - often heuristic & ad-hoc
 - focus exclusively on either continuous or discrete dynamics
 - \rightarrow structured approach necessary
- Consider hybrid nature of systems (holistic view)
- Combination of systems & control, computer science, optimization, communications, mathematics, simulation...

Outline

- 1 Overview of the course
- 2 Motivating Hybrid Systems
- 3 Hybrid automata
- 4 Examples of hybrid systems
- 5 Examples with Zeno behavior
- 6 Summary

Systems

Definition (System or Machine, Sontag)

A system or machine $\Sigma = (\mathcal{T}, \mathcal{X}, \mathcal{U}, \phi)$ consists of:

- A time set \mathcal{T} ;
- A nonempty set X called the state space of Σ;
- A nonempty set \mathcal{U} called the control-value or input-value space of Σ ;
- A map $\phi : \mathcal{D}_{\phi} \to \mathcal{X}$ called the transition map of Σ , which is defined on a subset \mathcal{D}_{ϕ} of $\{(\tau, \sigma, x, \omega) \mid \tau, \sigma \in \mathcal{T}, \tau \leq \sigma, x \in \mathcal{X}, \omega : [\tau, \sigma) \to \mathcal{U}\}$ such that the non-triviality, restriction, semi-group and identity properties (see [Son98] for exact descriptions) hold.

• Example: $\dot{x}(t) = f(x(t), u(t))$, t: time, x: state, u: input

Son98 E.D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, New York, 1998. Texts in applied Mathematics, vol. 6

Manuel Mazo Jr. (TU Delft)

Generalized Transition Systems

Definition (Generalized Transition System)

- A system is a sextuple $(X, X_0, U, \longrightarrow, Y, H)$ consisting of:
 - a set of states X;
 - a set of initial states $X_0 \subseteq X$;
 - a set of inputs U;
 - a transition relation $\longrightarrow \subseteq X \times U \times X$;
 - a set of outputs Y;
 - an output map $H: X \to Y$.
- Tab09 P. Tabuada. Verification and control of hybrid systems: a symbolic approach. Springer Science & Business Media, 2009.

Classification of systems

- Continuous-state / discrete-state / finite-state (X or X)
- Continuous-time / discrete-time (*T*)
- Time-driven / event-driven
 - time-driven → state changes as time progresses, i.e., continuously (for continuous-time), or at every tick of a clock (for discrete-time)
 - \blacksquare event-driven \rightarrow state changes due to occurrence of event:
 - start or end of an activity
 - aperiodic (occurrence times not necessarily equidistant)

 $\mathsf{Combinations} \Rightarrow ``hybrid''$

Models for time-driven systems

• Continuous-time time-driven systems:

$$\dot{x}(t) = f(x(t), u(t))$$
$$y(t) = g(x(t), u(t))$$

Discrete-time time-driven systems:

$$x(k+1) = f(x(k), u(k))$$
$$y(k) = g(x(k), u(k))$$

Models for event-driven systems

Definition (Automaton)

An Automaton is defined by the tuple $\Sigma = (Q, Q_0, U, \mathcal{F}\phi)$ with

- Q: finite or countable set of discrete states
- $\mathcal{Q}_0 \subseteq \mathcal{Q}$: subset of initial states
- U: finite or countable set of discrete inputs ("input alphabet")
- $\mathcal{F} \subseteq \mathcal{Q}$: subset of final (or accepting) states
- $\phi : \mathcal{Q} \times \mathcal{U} \to P(\mathcal{Q})$: partial transition function.

where P(Q) is power set of Q (set of all subsets)

Finite automaton: Q and U finite. Alternatively one can denote $\phi \subseteq Q \times U \times Q$. Depending on context often Q_0 and \mathcal{F} are dropped. P(X), often also denoted 2^X is the power set of X, i.e. the set of all subsets of X.

Evolution of automaton

- Given state $q \in Q$ and discrete input symbol $u \in U$, transition function ϕ defines collection of next possible states: $\phi(q, u) \subseteq Q$
- Accepting states are used on automata to model computation, e.g. language acceptance.
 Acceptance depends on the type of automaton, e.g. finite, Büchi,

Rabin,...

- If each set of next states has 0 or 1 element:
 - \rightarrow "deterministic" automaton
- If some set of next states has more than 1 element:
 - \rightarrow "non-deterministic" automaton

Deterministic automaton

$$egin{aligned} \phi(q_{ ext{busy}},eta) &= \{q_{ ext{down}}\} & \phi(q_{ ext{down}},lpha) &= \{q_{ ext{busy}}\} \ \phi(q_{ ext{busy}},lpha) &= \{q_{ ext{down}}\} & \phi(q_{ ext{down}},lpha) &= \{q_{ ext{down}}\} \end{aligned}$$

Accepting automaton

- Acceps strings of the form: 10, 110010, 1000
- Does not accept: 100 or 1111
- The accepted strings define a language, in this case: {((1*(00)*)*0}

Non-deterministic automaton

$$\phi(q_1, \alpha) = \{q_1, q_2\} \qquad \phi(q_2, \beta) = \{q_1\}$$

 \rightarrow unmodeled dynamics, e.g. environment (player)

Hybrid system

- System can be in one of several modes
- In each mode: behavior described by system of difference or differential equations
- Mode switches due to occurrence of "events"

Hybrid system

- At switching time instant:
 - \rightarrow possible state reset or state dimension change
- Mode transitions may be caused by
 - external control signal
 - internal control signal
 - dynamics of system itself (crossing of boundary in state space)

Models for hybrid systems

- timed or hybrid Petri nets
- differential automata
- hybrid automata
- Brockett's model
- mixed logical dynamic models
- real-time temporal logics
- timed communicating sequential processes
- switched bond graphs
- predicate calculus

. . .

piecewise-affine models

Analysis techniques

formal verification

. . .

- computer simulation
- analytic techniques (for special subclasses)
- \Rightarrow no general modeling & analysis framework

modeling power \leftrightarrow decision power

- + computational complexity (NP-hard, undecidable)
 - \Rightarrow special subclasses (Chapter 2) hierarchical / modular approach

Decidability and complexity

Undecidable problems

 \rightarrow no algorithm can solve the problem in general, i.e., finite termination cannot be guaranteed

NP-complete and NP-hard problems

decision problem: solution is either "yes" or "no"
e.g., traveling salesman decision problem:
Given a network of cities, intercity distances, and a

number *B*, does there exist a tour with length $\leq B$?

search problem

e.g., traveling salesman problem:

Given a network of cities, intercity distances, what is the shortest tour?

P and NP-complete decision problems

- Time complexity function T(n): largest amount of time needed to solve problem instance of size n (worst case!)
- Polynomial time algorithm:

 $T(n) \leq |p(n)|$ for some polynomial p

 \rightarrow class P: solvable in polynomial time on a deterministic computer

- Nondeterministic computer:
 - guessing stage (tour)
 - checking stage (compute length of tour + compare it with B)
 - \rightarrow class NP: "nondeterministically polynomial"
 - i.e., time complexity of checking stage is polynomial

N.B.: Computer here is used in the sense of a "Turing Machine"

P and NP-complete decision problems

Every problem in NP can be solved in exponential time: $T(n) \leqslant 2^{n^k}$

Definition (NP-complete)

An NP problem $\mathcal X$ is NP-complete iff every NP problem $\mathcal Y$ can be reduced to $\mathcal X$ in polynomial time.

- NP-complete problems: "hardest" class in NP:
- any NP-complete problem solvable in polynomial time ⇒ every problem in NP solvable in polynomial time
- any problem in NP intractable
 - \Rightarrow NP-complete problems also intractable

NP-hard problems

Definition (NP-hard)

A problem \mathcal{X} is NP-hard, if there exist an NP-complete problem \mathcal{Y} , such that \mathcal{Y} is reducible to \mathcal{X} in polynomial time.

Remark: In this case \mathcal{X} is *not* necessarily an NP problem.

- Decision problem is NP-complete \Rightarrow search problem is NP-hard
- NP-hard problems: at least as hard as NP-complete problems
 - NP-complete (decision problem)

 \rightarrow solvable in polynomial time if and only if $\mathsf{P}=\mathsf{N}\mathsf{P}$

NP-hard (search problem)

 \rightarrow cannot be solved in polynomial time *unless* P = NP

Complexity map

Figure: https://commons.wikimedia.org/wiki/File:P_np_np-complete_np-hard.svg
Examples of NP-hard and undecidable problems

Consider simple hybrid system:

$$egin{aligned} x(k+1) = egin{cases} A_1 x(k) & ext{if } c^{ ext{T}} x(k) \geqslant 0 \ A_2 x(k) & ext{if } c^{ ext{T}} x(k) < 0 \end{aligned}$$

 \rightarrow deciding whether system is stable or not is NP-hard

■ Given two Petri nets, do they have the same reachability set? → undecidable

Hybrid automaton

Definition (Hybrid automaton)

A Hybrid automaton H is collection H = (Q, X, f, Init, Inv, E, G, R)where

- $Q = \{q_1, \dots, q_N\}$ is finite set of discrete states or *modes*
- $X = \mathbb{R}^n$ is set of continuous states
- $f: Q \times X \to X$ is a (collection of) vector field(s)
- Init $\subseteq Q \times X$ is set of initial states
- Inv : $Q \rightarrow P(X)$ describes *invariants*
- $E \subseteq Q \times Q$ is a set of edges or (discrete) *transitions*
- $G: E \to P(X)$ are guard conditions
- $R: E \to P(X \times X)$ is reset map

Hybrid automaton

Hybrid automaton H = (Q, X, f, Init, Inv, E, G, R)

- Hybrid state: (q, x)
- Evolution of continuous state in mode q: $\dot{x} = f(q, x)$
- Invariant Inv: describes conditions that continuous state has to satisfy in given mode
- Guard G: specifies subset of state space where certain transition is enabled
- Reset map R: specifies how new continuous states are related to previous continuous states

DISC, 2022

Hybrid automaton

Evolution of hybrid automaton

- Initial hybrid state $(q_0, x_0) \in Init$
- Continuous state x evolves according to

$$\dot{x} = f(q_0, x)$$
 with $x(0) = x_0$

discrete state q remains constant: $q(t) = q_0$

- Continuous evolution can go on as long as $x \in Inv(q_0)$
- If at some point state x reaches guard $G(q_0, q_1)$, then
 - transition $q_0
 ightarrow q_1$ is enabled
 - discrete state may change to q_1 , continuous state then jumps from current value x^- to new value x^+ with $(x^-, x^+) \in R(q_0, q_1)$
- Next, continuous evolution resumes and whole process is repeated

Outline

- 1 Overview of the course
- 2 Motivating Hybrid Systems
- 3 Hybrid automata
- 4 Examples of hybrid systems
- 5 Examples with Zeno behavior
- 6 Summary

Examples of hybrid systems

1 Hysteresis

- 2 Manual transmission
- 3 Water-level monitor
- 4 Supervisor
- 5 Two-carts system
- 6 Boost converter

Control system with Hysteresis

Manuel Mazo Jr. (TU Delft)

Modeling & Control of Hybrid Systems

Manual transmission

Simple model of manual transmission

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = \frac{-ax_2 + u}{1 + v}$$

- with v: gear shift position $v \in \{1, 2, 3, 4\}$
 - u: acceleration
 - a: parameter
- $\rightarrow\,$ hybrid system with four modes, 2-dimensional continuous state, controlled transitions (switchings), and no resets

Water-level monitor

Variables:

- y(t): water level, continuous
- x(t): time elapsed since last signal was sent by monitor, continuous
- P(t): status of pump, $\in \{\texttt{on}, \texttt{off}\}$
- S(t): nature of signal last sent by monitor, ∈ {on, off}

Dynamics of system:

- water level rises 1 unit per second when pump is on and falls 2 units per second when pump is off
- when water level rises to 10 units, monitor sends switch-off signal; after delay of 2 seconds pump turns off
- when water level falls to 5 units, monitor sends switch-on signal; after delay of 2 seconds pump switches on

Water-level monitor

- Two carts connected by spring
- Left cart attached to wall by spring; motion constrained by completely inelastic stop Stop is placed at equilibrium position of left cart
- Masses of carts and spring constants = 1

- x_1, x_2 : deviations of left and right cart from equilibrium position
- x₃, x₄: velocities of left and right cart
- z: reaction force exerted by stop

• Evolution:
$$\dot{x}_1(t) = x_3(t)$$

 $\dot{x}_2(t) = x_4(t)$
 $\dot{x}_3(t) = -2x_1(t) + x_2(t) + z(t)$
 $\dot{x}_4(t) = x_1(t) - x_2(t)$

To model stop:

- Define $w(t) = x_1(t)$
- $w(t) \ge 0$ (since w is position of left cart w.r.t. stop)
- Force exerted by stop can act only in positive direction $\rightarrow z(t) \ge 0$
- If left cart not at stop (w(t) > 0), reaction force vanishes: z(t) = 0
- If z(t) > 0 then cart must necessarily be at the stop: w(t) = 0

$$0 \leq w(t) \perp z(t) \geq 0$$

System can be represented by two modes (stop active or not)

$$\begin{array}{cccc} \hline z = 0 & \underline{unconstrained} & \underline{constrained} & w = 0 \\ \dot{x}_1(t) = x_3(t) & \dot{x}_1(t) = x_3(t) \\ \dot{x}_2(t) = x_4(t) & \dot{x}_2(t) = x_4(t) \\ \dot{x}_3(t) = -2x_1(t) + x_2(t) & \dot{x}_3(t) = -2x_1(t) + x_2(t) + z(t) \\ \dot{x}_4(t) = x_1(t) - x_2(t) & \dot{x}_4(t) = x_1(t) - x_2(t) \\ z(t) = 0 & w(t) = x_1(t) = 0 \\ ODE \text{ (in state)} & DAE \text{ (as } z \text{ is not explicit)} \end{array}$$

System stays in mode as long as

Mode transitions for two-carts system

• Unconstrained \rightarrow constrained

Suppose $x(\tau) = (0^+, -1, -1, 0)^T \rightarrow w(t) > 0$ tends to be violated Left cart hits stop and stays there. Velocity of left cart is reduced to zero instantaneously (purely inelastic collision)

Constrained \rightarrow unconstrained

Suppose $x(\tau) = (0, 0, 0, 1)^T \rightarrow z(t) > 0$ tends to be violated Right cart is moving to right of its equilibrium position, so spring between carts pulls left cart away from stop

Mode transitions for two-carts system

 \blacksquare Unconstrained \rightarrow unconstrained with re-initialization according to constrained mode

Consider $x(\tau) = (0^+, 1, -1, 0)^T \rightarrow w(t) > 0$ tends to be violated At impact, velocity of left cart is reduced to 0, i.e., state reset to $(0, 1, 0, 0)^T$

Right cart is at right of its equilibrium position, pulls left cart away from stop \rightarrow smooth continuation in unconstrained mode

So: After the reset, no smooth continuation is possible in constrained mode \rightarrow second mode change, back to unconstrained mode

50 / 71

Supervisor model

Controller is input-output automaton: $q = \nu(q, i)$ $o = \eta(q, i)$

Manuel Mazo Jr. (TU Delft)

Boost converter

- Presence of switch and diode introduces hybrid dynamics
- 4 modes:

$$(v_{S} = 0, v_{D} = 0), (v_{S} = 0, i_{D} = 0), (i_{S} = 0, v_{D} = 0), (i_{S} = 0, i_{D} = 0)$$

Manuel Mazo Jr. (TU Delft)

Boost converter: transitions

transition	guard	reset
mode 1 \rightarrow mode 2	$S=1$ and $q\geq 0$	
mode 1 $ ightarrow$ mode 3	$\phi = 0$ and $q > CE$	
mode 1→mode 3	$\phi < 0$	$\phi^+ = 0$
mode 1 \rightarrow mode 4	$S=1$ and $q\leq 0$	$q^+ = 0$
mode 2 \rightarrow mode 1	$S=0$ and $\phi\geq 0$	
mode $2 \rightarrow$ mode 3	$S=0$ and $\phi\leq 0$	$\phi^+ = 0$
mode $2 \rightarrow$ mode 4	q = 0	
mode 2→mode 4	q < 0	$q^{+} = 0$
mode 3 $ ightarrow$ mode 1	q = CE	
mode $3 \rightarrow mode 2$	$S=1$ and $q\geq 0$	
mode $3 \rightarrow$ mode 4	$S=1$ and $q\leq 0$	$q^{+} = 0$
mode 4 $ ightarrow$ mode 1	$S=0$ and $\phi\geq 0$	
mode $4 \rightarrow$ mode 3	$S=0$ and $\phi\leq 0$	$\phi^+ = 0$
mode $4 \rightarrow$ mode 4	<i>q</i> < 0	$q^{+} = 0$

Manuel Mazo Jr. (TU Delft)

DISC, 2022

Boost converter: Hybrid automaton

Manuel Mazo Jr. (TU Delft)

Boost converter: Linear Complementarity model

Hybrid automaton model is very involved Alternatively, one may use the more compact model

$$\dot{q} = -\frac{1}{RC}q + i_D$$

$$\dot{\phi} = v_S + E$$

$$-v_D = \frac{1}{C}q + v_S$$

$$i_S = \frac{1}{L}\phi - i_D$$

$$0 \le i_D \perp -v_D \ge 0$$

$$v_S \perp i_S$$

 \rightarrow also complementarity relation (as in two-carts system)

Outline

- 1 Overview of the course
- 2 Motivating Hybrid Systems
- 3 Hybrid automata
- 4 Examples of hybrid systems
- 5 Examples with Zeno behavior

6 Summary

Zeno behavior

Zeno behavior: infinitely many mode switches in finite time interval

Examples

- 1 bouncing ball
- 2 reversed Filippov's system
- 3 two-tank system
- 4 three-balls example

Bouncing ball

- Dynamics: $\ddot{x} = -g$ subject to $x \ge 0$ (x(t)): height
- Newton's restitution rule (0 < e < 1):</p>

$$\dot{x}(au+)=-e\dot{x}(au-)$$
 when $x(au-)=0,\ \dot{x}(au-)<0$

Assuming x(0) = 0, $\dot{x}(0) > 0$, event times are related through

$$\tau_{i+1} = \tau_i + \frac{2e^i \dot{x}(0)}{g}$$

- Sequence has finite limit $\tau^* = \frac{2\dot{x}(0)}{g-ge} < \infty$ (geometric series)
- Physical interpretation: ball is at rest within finite time span, but after infinitely many bounces \rightarrow Zeno behavior

In this case: infinite number of state re-initializations, set of event times contains *right-accumulation point*

Bouncing ball

Reversed Filippov's example

Dynamics:

$$\dot{x}_1 = -\operatorname{sgn}(x_1) + 2\operatorname{sgn}(x_2)$$

 $\dot{x}_2 = -2\operatorname{sgn}(x_1) - \operatorname{sgn}(x_2),$

with

$$\begin{cases} \operatorname{sgn}(x) = 1 & \text{if } x > 0\\ \operatorname{sgn}(x) = -1 & \text{if } x < 0\\ \operatorname{sgn}(x) \in [-1, 1] & \text{when } x = 0 \end{cases}$$

Solutions system are spiraling towards origin, which is an equilibrium

Reversed Filippov's example: Finite time convergence

Since $\frac{d}{dt}(|x_1(t)| + |x_2(t)|) = -2$, solutions reach origin in finite time

 Solutions go through infinite number of mode transitions (relay switches) → Zeno behavior

Reversed Filippov's example: Finite time convergence

Dynamics:

$$\dot{x}_1 = -\operatorname{sgn}(x_1) + 2\operatorname{sgn}(x_2)$$

 $\dot{x}_2 = -2\operatorname{sgn}(x_1) - \operatorname{sgn}(x_2),$

"Derivative" of absolute value function: d/dx |x| = sgn(x)
So

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}(|x_1(t)| + |x_2(t)|) \\ &= \dot{x}_1 \mathrm{sgn}(x_1) + \dot{x}_2 \mathrm{sgn}(x_2) \\ &= -\mathrm{sgn}^2(x_1) + 2\mathrm{sgn}(x_2) \mathrm{sgn}(x_1) - 2\mathrm{sgn}(x_1) \mathrm{sgn}(x_2) - \mathrm{sgn}^2(x_2) \\ &= -1 - 1 \\ &= -2 \end{aligned}$$

Two-tank system

- Two tanks (x_i: volume of water in tank)
- Tanks are leaking at constant rate v_i > 0
- Water is added at constant rate w through hose, which at any point in time is dedicated to either one tank or the other
- Objective: keep water volumes above r_1 and r_2
- Controller that switches inflow to tank 1 whenever $x_1 \le r_1$ and to tank 2 whenever $x_2 \le r_2$

Manuel Mazo Jr. (TU Delft)

Description of two-tank system as hybrid automaton

Two modes: filling tank 1 (mode q1) or tank 2 (mode q2)
Evolution of continuous state:

$$\begin{cases} \dot{x}_1 = w - v_1 \\ \dot{x}_2 = -v_2 \end{cases} \text{ in mode } q_1 \qquad \begin{cases} \dot{x}_1 = -v_1 \\ \dot{x}_2 = w - v_2 \end{cases} \text{ in mode } q_2 \\ \dot{x}_2 = w - v_2 \end{cases}$$

Manuel Mazo Jr. (TU Delft) Modeling & Control of Hybrid Systems

I

Description of two-tank system as hybrid automaton (cont.)

Invariants:
$$\operatorname{Inv}(q_1) = \{x \in \mathbb{R}^2 \mid x_2 \ge r_2\}$$
Inv $(q_2) = \{x \in \mathbb{R}^2 \mid x_1 \ge r_1\}$
Guards: $G(q_1, q_2) = \{x \in \mathbb{R}^2 \mid x_2 \le r_2\}$
 $G(q_2, q_1) = \{x \in \mathbb{R}^2 \mid x_1 \le r_1\}$

No resets:

$$R(q_1, q_2) = R(q_2, q_1) = \{(x^-, x^+) \mid x^-, x^+ \in \mathbb{R}^2 \text{ and } x^- = x^+\}$$

Description of two-tank system as hybrid automaton (cont.)

Two-tank system and Zeno behavior

- Assume total outflow $v_1 + v_2 > w$
- Control objective cannot be met and tanks will empty in finite time
- Infinitely many switchings in finite time \rightarrow Zeno behavior

Three-balls example: model

- System consisting of three balls
- Inelastic impacts modeled by successions of simple impacts
- Suppose unit masses, touching at time 0, and $v_1(0) = 1$, $v_2(0) = v_3(0) = 0$
- \blacksquare We model all impacts separately \rightarrow
 - first, inelastic collision between balls 1 and 2, resulting in $v_1(0+) = v_2(0+) = 0.5$, $v_3(0+) = 0$

Three balls example: Zeno

- next, ball 2 hits ball 3, resulting in $v_1(0++) = \frac{1}{2}$, $v_2(0++) = v_3(0++) = \frac{1}{4}$
- next, ball 1 hits ball 2 again, etc.

 Afterwards, smooth continuation is possible with constant and equal velocity for all balls

Infinite number of events (resets) at one time instant, sometimes called *live-lock* → another special case of Zeno behavior

Manuel Mazo Jr. (TU Delft) Modeling & Control of Hybrid Systems DIS
Outline

- 1 Overview of the course
- 2 Motivating Hybrid Systems
- 3 Hybrid automata
- 4 Examples of hybrid systems
- 5 Examples with Zeno behavior

6 Summary

Summary

- Definition and examples of hybrid systems
- Hybrid automaton
- Complexity issues: modeling power vs decision power
- Zeno behavior