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ABSTRACT
Control Lyapunov Functions (CLF) method gives a constructive
tool for stabilization of nonlinear systems. To �nd a CLF, many
methods have been proposed in the literature, e.g. backstepping
for cascaded systems and sum of squares (SOS) programming for
polynomial systems. Dealing with continuous-time systems, the
CLF-based controller is also continuous-time, whereas practical
implementation on a digital platform requires sampled-time con-
trol. In this paper, we show that if the continuous-time controller
provides exponential stabilization, then an exponentially stabilizing
event-triggered control strategy exists with the convergence rate
arbitrarily close to the rate of the continuous-time system.
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1 INTRODUCTION
The idea to use Lyapunov functions as a control design tool [20]
naturally leads to the method of Control Lyapunov Functions (CLF).
Being a natural extension of the usual Lyapunov functions for
controlled systems, a CLF is a function that becomes a Lyapunov
function of the closed-loop system under an appropriate choice of
the controller. The existence of a CLF is necessary and su�cient for
stabilization of a general nonlinear system, as implied by the fun-
damental Artstein’s theorem [8]. This theorem, however, provides
no constructive way to design the stabilizing control, moreover,
this control in general can be “relaxed” (randomized), mapping a
system’s state into a probability measure. These limitations may be
overcome in the case of a�ne systems. Sontag’s theorem [36] gives
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an explicit formula for one stabilizing feedback, which appears to
be continuous everywhere except for the equilibrium point.

Whereas to �nd a CLF for a given control system is a non-trivial
problem, in some important situations it can be found in an explicit
form. Examples include some homogeneous systems [15], passive
and feedback-passive systems [22, 23] and cascaded systems, for
which both CLF and stabilizing controller can be delivered by the
backstepping and forwarding procedures [24, 34]. CLFs can often be
computed by using numerical tools, e.g. the Sum of Square (SOS)
programming [17] and Zubov’s method [11].

Nowadays the method of CLF is recognized as a powerful tool
in nonlinear control systems’ design [22, 24, 34]. A CLF gives a
solution to the Hamilton-Jacobi-Bellman equation for an appropri-
ate performance index, giving a solution to the inverse optimality
problem [16]. The method of CLF has been extended to discrete-
time [21], time-delay [19] and hybrid systems [2, 33]. Combin-
ing CLFs and Control Barrier Functions (CBFs), correct-by-design
controllers for stabilization under safety constraints can be ob-
tained [3, 32], enabling to design safety-critical control systems,
arising e.g. in automotive [3, 31] and aerospace [27] applications.

Typically, CLF-based controllers are continuous-time. Their im-
plementation on digital platforms requires to introduce time sam-
pling. A straightforward approach, often used in engineering, is to
emulate the continuous-time feedback by a discrete-time control,
sampled periodically at a high rate. However, rigorous techniques
for nonlinear controllers’ discretization have appeared only re-
cently [7, 30] and are highly non-trivial. As an alternative to these
techniques, digital controllers based on event-triggered sampling
can be used. Event-triggered sampling has a number of advantages
over periodic (time-triggered) sampling, providing parsimonious
use of communication and power [6, 9, 10, 39].

A natural question arises whether the existence of a (continuous-
time) CLF enables one to design an event-triggered stabilizing con-
troller. Such controllers have been found for only a few special
cases. The most studied is the case where the system admits a
so called ISS Lyapunov function [39], being a special CLF that en-
sures a special input-to-state stability (ISS) [37] property of the
closed-loop system. A more recent result from [35] relaxes the ISS
condition to a stronger version of usual asymptotic stability, how-
ever the control algorithm from [35], in general, does not ensure
positive dwell time between the consecutive events, nor even the
absence of Zeno behaviors. Another approach, based on Sontag’s
universal formula [36] and inheriting its basic limitations has been
proposed in [28, 29]. All of these results rely on restrictive assump-
tions, discussed in detail in Section 2, and do not allow to estimate
the convergence rate e�ciently. In many situations a CLF can be
designed that provides exponential convergence rate [2] in continu-
ous time. A natural question arises whether event-based controllers
can provide the same (or an arbitrarily close) convergence rate.
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In this paper, we give an a�rmative answer to this fundamental
question. Under natural assumptions, we design an event-triggered
controller, similar in structure to the one proposed in [35], but re-
taining the exponential convergence and providing a positive dwell
time between consecutive events.

2 PRELIMINARIES AND PROBLEM SETUP
Given amapG : Rn ! Rm such thatG(x) = (G1(x), . . . ,Gm (x))> 2
Rm , we use G 0(x) =

� @Gi (x )
@x j

�
to denote itsm ⇥ n Jacobian matrix.

2.1 Control Lyapunov functions in
stabilization problems

In this paper, we deal only with CLFs for global asymptotic stabi-
lization of general nonlinear systems of the form

€x(t) = F (x(t),u(t)), t � 0. (1)

Here x(t) 2 Rn stands for the state vector and u(t) 2 U ✓ Rm is
the control input. Our goal is to �nd a controller u(·) = U(x(·)),
where U : x(·) 7! u(·) is some causal operator, such that for any
x(0) 2 Rn the closed-loop system has a forward complete (existing
up to +1) solution, and all solutions converge to an equilibrium,
assumed, without loss of generality, to be 0

x(t) ����!
t!1

0 8x(0). (2)

Following the de�nition from [36], henceforth all CLFs are sup-
posed to be radially unbounded, or proper [36].

De�nition 2.1. [36] A C
1-smooth function V : Rn ! R is called

a control Lyapunov function (CLF) in the stabilization problem, if

V (0) = 0, V (x) > 08x , 0, lim
|x |!1

V (x) = 1; (3)

inf
u 2U

V
0(x)F (x ,u) < 0 8x , 0. (4)

The condition (4), obviously, can be reformulated as follows

8x , 09u = u(x) 2 U such that V 0(x)F (x ,u(x)) < 0. (5)

If F (x ,u) is Lebesgue measurable (e.g., continuous), then the mea-
surable selector theorem [18, Theorem 5.2] implies that the function
u(x) can be chosen measurable. This function is, in general, discon-
tinuous, so that the closed-loop system has no classical solutions.
However, the existence of a CLF is necessary and su�cient [8] for
the existence of a relaxed stabilizing control x 7! �(x), where �(x)
is a probability distribution onU .

The situation becomes much simpler in the case where the sys-
tem (1) is a�ne: F (x ,u) = f (x)+�(x)u. Assuming that f : Rn ! Rn
and � : Rn ! Rn⇥m are continuous andU is convex, the existence
of a CLF ensures the possibility to design a controller u = u(x),
where u : Rn ! U is continuous everywhere except for, possibly
x = 0 (the continuity at x = 0 requires an additional assump-
tion) [8]. Extending this result, Sontag [36] has proposed an explicit
universal formula, giving a broad class of stabilizing controllers. In
the simplest case wherem = 1 (scalar control) andU = R, Sontag’s
formula gives the following controller

u(x) =
8>><
>>:
�a(x )+

p
a(x )2+q(b(x ))b(x )

b(x ) , b(x) � 0
0, otherwise.

(6)

Here the functions a,b are de�ned as

a(x) �
= V 0(x)f (x), b(x) �

= V 0(x)�(x)

and q(b) is a continuous function, q(0) = 0. Controllers similar
to (6) have been proposed for U , being the Euclidean space Rm
withm > 1 [36] and a closed ball in Rm [25].

2.2 CLF and event-triggered control
Dealing with continuous-time systems (1), Lyapunov controllers
are also continuous-time, which makes it impossible to implement
them directly on a digital platform. In reality, the control is always
sampled time, that is, the control command is computed and sent
to the plant only at discrete instants t0 = 0 < t1 < . . . < tn < . . .,
remaining constant between them. The simplest time sampling is
periodic tn = n� . In spite of the belief that high-frequency periodic
control (with small � ) satisfactorily emulates the continuous-time
controller, mathematically rigorous analysis of the resulting non-
linear sampled-time system appears to be non-trivial [7, 30]. Al-
ternatively, sampling can be triggered by some condition, or event,
e.g., tn+1 can be the �rst instant after tn when the absolute value of
the “error” e(t) = x(tn ) � x(t) reaches a prede�ned threshold [39].
This approach, known as event-based or event-triggered sampling
has many advantages over periodic control, in particular, it uses
communication and energy resources parsimoniously [6, 9, 10, 39].

A natural question arises whether a continuous-time CLF can
be employed to design an event-triggered stabilizing controller. Up
to now, only a few results of this type have been reported in the
literature. In the seminal work [39], an event-triggered controller
requires the existence of a special CLF, called ISS Lyapunov function,
for which the conditions (3),(4) are replaced by the following

�1(|x |)  V (x)  �2(|x |) 8x 2 Rn

V
0(x)F (x ,k(x + e))  ��3(|x |) + � (|e |) 8x , e 2 Rn .

(7)

Here �i (·) (i = 1, 2, 3) are K1-functions1 and the mappings u(·) :
Rn ! Rm , F (·, ·) : Rn ⇥ Rm ! Rn , ��13 (·) and � (·) : R+ ! R+
are assumed to be locally Lipschitz. The continuous-time control
u = k(x) not only stabilizes the system, but in fact also provides
input to state stability (ISS) with respect to the measurement error
e . The event-triggered controller, o�ered in [39], is as follows

u(t) = k(x(tn )) if t 2 [tn , tn+1)
t0 = 0, tn+1 = inf {t > tn : � (|e(t)|) = ��3(|x(t)|)} ,

e(t) = x(tn ) � x(t), � = const 2 (0, 1).
(8)

The controller (8) provides positive dwell time between consecutive
events � = infn�0(tn+1 � tn ) > 0, which is uniformly positive for
the solutions, starting in any compact set.

Whereas the condition (7) holds for linear systems [39] and
some polynomial systems [5], in general it is restrictive and not
easily veri�able. Another approach to CLF-based design of event-
triggered controllers have been proposed in [28, 29]. Discarding the
ISS condition (7), this approach is based on Sontag’s theory [36]
and inherits its basic assumptions: �rst, the system has to be a�ne
F (x ,u) = f (x) + �(x)u, where f ,� 2 C

1, second, the Sontag for-
mula [36] gives an admissible controller, that is, u(x) 2 U for any x .

1That is, �i are continuous, strictly increasing, �i (0) = 0 and lims!1 �i (s) = 1.
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The controllers from [28, 29] also provide the positive dwell-time
(or “minimal inter-sampling interval”, MSI [28]) property.

An alternative event-triggered control algorithm, substantially
relaxing the ISS condition (7) and applicable, unlike [28, 29], to non-
a�ne systems, has been proposed in [35]. This approach requires
the existence of a CLF that satis�es (7) with e = 0, i.e.

�1(|x |)  V (x)  �2(|x |), V
0(x)F (x ,u(x))  ��3(|x |). (9)

The events are triggered in a way providing thatV strictly decreases
along any non-equilibrium trajectory

tn+1 = inf{t � tn : V 0(x(t))F (x(t),un ) = �µ(|x(t)|)}. (10)

Here 0 < µ(r ) < �3(r ) for any r > 0 and µ is K1-function. In
general, this algorithm does not guarantee the dwell time positivity
and may even lead to Zeno solutions [35].

In this paper, we consider an algorithm similar in spirit to the al-
gorithm from [35]. Unlike [35], in this paper we con�ne ourselves to
CLFs that give exponentially stabilizing continuous-time controllers,
which requires to modify the condition (9). In the case where such
a CLF exists, we prove (under some natural assumptions) that ex-
ponential convergence can also be provided by an event-triggered
controller. Furthermore, such a controller provides convergence
rate arbitrary close to the rate of the continuous-time control and
provides positive dwell time between consecutive switchings of the
control input. Unlike [5, 39], we do not assume that CLF satis�es
the ISS condition (7). Unlike [28, 29], the a�nity of the system is
not needed, and the convergence rate can be explicitly estimated.
Unlike [35], we prove the dwell time positivity (which, in particular,
implies that all solutions are non-Zeno).

2.3 Exponential stabilization. Problem setup.
Whereas the existence of CLF typically allows to �nd a stabilizing
controller, it can potentially be unsatisfactory due to very slow con-
vergence. Throughout this paper, we assume that the continuous-
time CLF-based controller provides exponential convergence rate;
such a CLF is also called exponentially stabilizing, or ES-CLF [2].
Although �nding of ES-CLF can be non-trivial, the inverse Lya-
punov theorem [22] implies that it usually exists in the vicinity of
the equilibrium if the system can be exponentially stabilized.

De�nition 2.2. A function V (x), satisfying (3), is said to be an
ES-CLF with exponent � > 0, if there exists a map U : Rn ! U ,
satisfying the conditions

V
0(x)F (x ,U(x))  ��V (x) 8x , F (0,U(0)) = 0. (11)

Note that the mapU(·) is not assumed to be continuous, so that
the controller u = U(x) can be “infeasible”, that is, for some initial
conditions the closed-loop system has no classical (Caratheódory’s)
solutions. For forward complete solutions, (11) implies that

V (x(t))  V (x(0))e�� t .
Note that, in general, V (x) need not be a monotone function of the
norm |x |, so (11) does not imply (9).

In this paper, we address the following fundamental question:
does the existence of an ES-CLF allow to design an event-triggered
mechanism, also providing exponential convergence? In fact, we
seek for event-triggered controllers whose convergence rates are
arbitrarily close to the rate of the continuous-time controller.

Problem. Given an ES-CLF V with exponent � and a constant
� 2 (0, 1), design an event-triggered controller, providing the expo-
nential convergence with exponent ��

0  V (x(t))  V (x(0))e��� t . (12)

3 EVENT-TRIGGERED CONTROLLER DESIGN
Henceforth we suppose that an ES-CLFV (x) and the corresponding
feedback mapU(x) from (11) are �xed. By de�nition, for any x we
have U(x) 2 U . To simplify notation, denote

W (x ,u) �
= V 0(x)F (x ,u) 2 R, x 2 Rn ,u 2 U . (13)

The design of our event-triggered algorithm, to be discussed in
what follows, provides that

€V (x(t)) =W (x(t),u(t))  ���V (x(t)) 8t � 0, (14)

which evidently implies (12).
As usual in event-triggered control, the input u(t) switches at

sampling instants t0, t1, . . ., whose sequence depends on the so-
lution. At the initial instant t0 = 0, compute the control input
u0

�
= U(x(t0)) and consider the solution corresponding to the input

u(t) = u0, t � t0. If V (x(t0)) = 0, then the system is already at the
equilibrium x(t0) = 0 and remains there due to the assumption
F (0,U(0)) = 0. Otherwise, for t su�ciently close to t0 one has

W (x(t),u0) < ���V (x(t)) (15)

sinceW (x(t0),u0)  ��V (x(t0)) and � < 1. The next sampling
instant t1 is the �rst time when (15) is violated; let t1 = 1 if such
an instant does not exist. If t1 < 1, we repeat the procedure and
compute the new control input u1 = U(x(t1)), which remains
unchanged till the next sampling instant t2. If V (x(t1)) = 0, then
the system stays at the equilibrium under the control input u(t) ⌘
u1, t � t1 and we put t2 = 1. Otherwise, for t su�ciently close to
t1 the following inequality holds

W (x(t),u1) < ���V (x(t)). (16)

Let the next sampling instant t2 be the �rst time t > t1 when (16) is
violated and t2 = 1 if such an instant does not exist. Iterating this
procedure, the sequence of instants {tn } is constructed in a way
that the controlu(t) = un

�
= U(x(tn )) for t 2 [tn , tn+1) satis�es (14).

If V (x(tn )) > 0, tn+1 is the �rst time t > tn when

W (x(t),un ) = ���V (x(t)). (17)

The sequence of sampling instants terminates ifV (x(tn )) = 0 or (17)
does not hold at any t > tn , in this case we formally de�ne tn+1 = 1
and the control remains constant u(t) ⌘ un for t > tn .

The procedure just described can be written mathematically as
u(t) = U(x(tn )) 8t 2 [tn , tn+1), t0 = 0,

tn+1 =

(
inf {t > tn : (17) holds} , V (x(tn )) > 0,
1, V (x(tn )) = 0.

(18)

(for brevity, we assume that inf ; �
= +1).

Note that implementation of Algorithm (18) assumes implicitly
that a constructive procedure (e.g. optimization-based) is available
to compute U(x(tn )) at each sampling instant, however, it does not
require any closed-form analytic expression forU(x).
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To assure the practical applicability of the algorithm (18), one
has to prove that the solution of the closed-loop system is unique
and forward complete, addressing the following two problems. First,
one has to establish the solution’s existence and uniqueness be-
tween two sampling instants. In particular, one has to show that
the event (17) is detected earlier than the solution runs away to
in�nity. Second, one has to show the absence of Zeno trajectories,
for which the sequence tn converges to a �nite limit.

De�nition 3.1. A solution to the closed-loop system (1),(18) is
said to be Zeno, or exhibit Zeno behavior if the sequence of sampling
instants is in�nite and lim

n!1
tn = sup

n�0
tn < 1.

Notice that even for non-Zeno trajectories it may happen that
tn+1 � tn ! 0 as n ! 1, which makes it problematic to implement
the algorithm on a real-time platform. Thus we are primarily inter-
ested in the more restrictive condition of the dwell-time positivity.

De�nition 3.2. The value T = T(x0) = inf
n�0

(tn+1 � tn ) is called
the dwell-time of the solution. Algorithm (18) provides positive
dwell time if T(x0) > 0. We say that the algorithm provides locally
uniformly positive dwell time if the function T is uniformly positive
on any compact set K , e.g. inf

x02K
T(x0) > 0.

In this paper, we establish criteria for local uniform (called some-
times “semi-uniform” [28]) positivity of the dwell time T.

3.1 The inter-sampling behavior of solutions
To examine the solution’s behavior between two sampling instants,
consider the following Cauchy problem

€� (t) = F (� (t),u⇤), � (0) = �0, t � 0, (19)

where u⇤ 2 U . To provide the unique solvability of (19), henceforth
the following non-restrictive assumption is adopted.

Assumption 3.3. For u⇤ 2 U , the map F (·,u⇤) is locally Lipschitz,
and hence the functionW (·,u⇤) : Rn ! R is continuous.

P���������� 3.4. Under Assumption 3.3, the Cauchy problem (19)
has the unique solution � (t) = � (t |�0,u⇤), whose maximal inter-
val of existence either contains a point t such thatW (� (t),u(t)) >
���V (� (t)) or is in�nite (the solution is forward complete).

P����. The �rst statement follows from the Picard-Lindelöf the-
orem [22]. It remains to prove that the solution cannot grow in�nite
whileW (� (t),u(t))  ���V (� (t)). Indeed, the latter condition im-
plies that €V (� (t))  ���V (� (t))  0, and thus V (� (t))  V (�0).
Recalling that V is proper, one obtains boundedness of � (t). ⇤

C�������� 3.5. Under Assumption 3.3, x(t) = � (t � t+ |x+,u⇤) is
the unique solution to the Cauchy problem

€x(t) = F (x(t),u⇤), x(t+) = x+, t � t+, (20)

where x+ 2 Rn and u⇤ 2 U . If x+ = 0 and u⇤ = U(0), then x(t) ⌘ 0.

Applying Corollary 3.5 to t+ = tn , x+ = x(tn ) andu⇤ = U(x(tn )),
one shows that the sequence of sampling instants tn in (18) is well
de�ned, and the instant tn+1 depends only on tn and x(tn ).

C�������� 3.6. Let Assumption 3.3 hold. For each sampling in-
stant tn , the solution to the Cauchy problem

€x(t) = F (x(t),un ), un = U(x(tn )), t � tn (21)

either satis�es the triggering condition (17) at some time t > tn (that
is, tn+1 < 1) or is forward complete and satis�es the inequality
W (x(t),un ) < ���V (x(t))8t � tn .

R����� 3.7. By construction of the sampling instants, the in-
equality (14) holds between them and, in particular, the CLF V (x(t))
is non-increasing along each trajectory.

3.2 Dwell time positivity
In this subsection, we formulate our main result, namely, the crite-
rion of dwell time positivity in Algorithm (18). This criterion relies
on additional assumptions.

For any x⇤ 2 Rn and K ⇢ Rn , denote

B(x⇤)
�
= {x : V (x)  V (x⇤)}, B(K) �

=
ÿ
x⇤ 2K

B(x⇤). (22)

The set B(K) is bounded for any bounded set K since V (x) is sup-
posed to be continuous and radially unbounded

B(K) ✓ {x : V (x)  sup
x⇤ 2K

V (x⇤)}.

Accordingly to Assumption 3.3, the following supremum is �nite

�(x⇤)
�
= sup

x1,x22B(x⇤)
x1,x2

|F (x1,U(x⇤)) � F (x2,U(x⇤))|
|x2 � x1 |

< 1 (23)

for any x⇤ (in the case where x⇤ = 0 and B(x⇤) = {0}, let �(x⇤)
�
= 0).

We adopt a stronger version of Assumption 3.3.

Assumption 3.8. The Lipschitz constant �(x⇤) in (23) is a locally
bounded function of x⇤ (that is, � is bounded on any compact).

Assumption 3.8 holds, for instance, if the mappingU is locally
bounded and the derivative F 0x (x ,u) is continuous in x and u. The
next assumption is a stronger version of CLF’s smoothness.

Assumption 3.9. The function V 0(x) is locally Lipschitz.

Along with �(·), we introduce the Lipschitz constant of the gra-
dient V 0 on the compact set B(x⇤) as follows

� (x⇤)
�
= sup

x1,x22B(x⇤)
x1,x2

|V 0(x1) �V
0(x2)|

|x2 � x1 |
, � (0) = 0. (24)

Since for any compact K the set B(K) is bounded, one has

sup
x⇤ 2K

� (x⇤)  sup
x1,x22B(K)

x1,x2

|V 0(x1) �V
0(x2)|

|x2 � x1 |
< 1.

Assumption 3.9 thus implies that � (·) from (24) is locally bounded.
Finally, we adopt an assumption that allows to establish the rela-

tion between the convergence rates of the ES-CLFV (x(t)) under the
continuous-time control U = U(x) and the solution x(t). Notice
that (11) gives no information about the speed of the solution’s
convergence since €V (x) = V 0(x) €x(t) depends only on the velocity’s
€x(t) projection on the gradient vector V 0(x), whereas the transver-
sal components can be arbitrary. These transversal dynamics can
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potentially lead to very slow and “non-smooth” convergence, e.g.,
the velocity €x = F (x ,U(x)) can be unbounded as x ! 0. Our �nal
assumption excludes this pathological behavior. For brevity, let

F̄ (x) �
= F (x ,U(x)).

Assumption 3.10. The ES-CLF V (x) and the corresponding con-
troller U(x) satisfy the following properties:

|F̄ (x)|  M1(x)|V 0(x)| 8x 2 Rn ,
cos� (x)  �M2(x) 8x 2 Rn \ {0}.

(25)

Here � (x) stands for the angle between the vectors F̄ (x) and V 0(x)
(Fig. 1),M1 is locally bounded, andM2 is locally strictly positive2.

The inequalities (25) imply that the solution does not oscillate
near the equilibrium since |F̄ (x)| ! 0 as |x | ! 0, and the angle
between the vectors3 €x = F̄ (x) andV 0(x) remains strictly obtuse as
x ! 0, i.e. the �ow is not transversal to the CLF’s gradient.

Figure 1: Illustration to Assumption 3.10: the angle � (x⇤)

Assumption 3.10 can be reformulated as follows.

L���� 3.11. For an ES-CLF V , Assumption 3.10 holds if and only
if a locally bounded functionM(x) > 0 exists such that

|V 0(x)| |F̄ (x)| + |F̄ (x)|2  M(x)|V 0(x)F̄ (x)| 8x . (26)

P����. To prove the “only if” part, notice that |V 0(x)F̄ (x)| =
| cos� (x)| |V 0(x)| |F̄ (x)| � M2(x)|V 0(x)| |F̄ (x)|. Therefore |F̄ (x)|2 
M1(x)|V 0(x)| |F̄ (x)|  M1(x)/M2(x)|V 0(x)F̄ (x)| and (26) holds for
M(x) = M1(x) +M1(x)/M2(x). To prove “if” part, note that

M(x) cos� (x) = M(x)V 0(x)F̄ (x)
|V 0(x)| |F̄ (x)|

(26), (11)
 �1

and |F̄ (x)|2  M(x)|V 0(x)F̄ (x)|  M(x)|V 0(x)| |F̄ (x)|. Hence |F̄ (x)| 
M(x)|V 0(x)| and (25) holds withM1 = M andM2 = 1/M . ⇤

Assumption 3.10 restricts the solution to approach the equilib-
rium “smoothly” in the sense that the state x(t) cannot change
much faster than the CLF decreases along it. Note that the de�ni-
tion of ES-CLF (11) implies the following “relaxed” version of this
assumption. First, V 0(x) = 0 implies that �V (x)  V

0(x)F̄ (x) = 0,
that is, x = 0 and thus F̄ (x) = 0, in other words, |F̄ (x)|/|V 0(x)| < 1
at any x , 0. Second, the angle between V 0(x) and F̄ (x) has to be
obtuse cos� (x) < 0 unless x = 0. It is convenient to verify Assump-
tion 3.10 and the condition (11) simultaneously since both of these
conditions involve V 0(x) and F̄ (x) = F (x ,u(x)).
2In other words, on any compact set the function M1 is bounded and the function M2
is uniformly strictly positive.
3The inequality (11) implies that both vectors are non-zero unless x , 0

We now formulate a key technical lemma which allows to es-
tablish the criterion of dwell time positivity in Algorithm (18).
This lemma, proved in Appendix, entails that the time tn+1 � tn
elapsed between two consecutive events cannot be smaller than
�� (x(tn )), where �� (·) is a locally uniformly positive function (de-
pending only on �(·),� (·),M(·) and � ). Consider again the solu-
tion � (t) = � (t |x⇤,U(x⇤)) to the system (19) with �0 = x⇤ and
u⇤ = U(x⇤).

L���� 3.12. Let the system (1) and the ES-CLF V (x) satisfy As-
sumptions 3.8-3.10. Then for any � 2 (0, 1) there exists a function
�� : Rn ! (0,1), featured by the following properties:

(1) �� (·) is uniformly strictly positive on any compact set;
(2) for any x⇤ , 0 the function � (t) = � (t |x⇤,U(x⇤)) is well-

de�ned on [0,�� (x⇤)] and, furthermore,

W (� (t),U(x⇤)) < ���V (� (t)) 8t 2 [0,�� (x⇤)). (27)

If the functions �(x⇤), � (x⇤) andM(x⇤)) are globally bounded, then
�� (x⇤) is uniformly strictly positive on Rn .

The proof of Lemma 3.12 will be given in Appendix. Note that
Algorithm (18) does not employ the functions �(x⇤), µ(x⇤) andM(x⇤)
in any way; they in�uence only the dwell time estimate �� (·). The
explicit formula for �� (x⇤), given in Appendix, shows that �� is non-
increasing in � , being maximal for � = 0 and vanishing as � ! 1.
Recalling that � regulates the convergence speed of the algorithm,
one can notice that the price paid for the fast convergence is the
small dwell time between the consecutive events (or, equivalently,
large number of events per unit of time). Our main result is the
following criterion of dwell time positivity.

T������ 3.13. Let the assumptions of Lemma 3.12 hold. Then
Algorithm (18) provides locally uniformly positive dwell time

T(x0) � �� ,min (x0)
�
= inf

x 2B(x0)
�� (x). (28)

Here �� (x) stands for the function from Lemma 3.12.

P����. Notice �rst that the function �� ,min from (28) is uni-
formly strictly positive on any compact set K ✓ Rn since

inf
x02K

�� ,min (x0) = inf
x 2B(K)

�� (x) > 0,

B(K) is bounded and thus�� is strictly positive onB(K). Remark (3.7)
implies that each set B(x⇤) is forward invariant, in particular, the
solution starting at x(0) = x0 remains in B(x0). If an event oc-
curs at t = tn , then Lemma 3.12 applied to x⇤ = x(tn ) entails that
the next event cannot occur earlier than at t = tn + �� (x(tn )) �
tn + �� ,min (x0), that is, tn+1 � tn � �� ,min (x0) for any n. ⇤

Proposition 3.4 and Theorem 3.13 imply, in particular, that algo-
rithm (18) is feasible in the sense that for any x(0), the closed-loop
system has the unique solution, which is forward complete.

3.3 Extensions
We now consider two important extensions of the main result,
dealing with non-exponential stability and safety-critical systems.
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3.3.1 Non-exponential convergence. Our algorithm (18) can be
easily modi�ed to cope with many CLFs that do not provide expo-
nential convergence. For instance, replacing (11) by the inequality

V
0(x)F (x ,U(x))  ��V (x)p 8x , F (0,U(0)) = 0, (29)

with p > 1 and � > 0, one has V (x(t)) = O
⇣
t

1
1�p

⌘
as t ! 1 since

V (x(t))  (V (x(0)) + � (p � 1)t)
1

1�p .

The arbitrarily close convergence rate is provided by the modi�ca-
tion of algorithm (18), where (17) is replaced by

W (x(t),un ) = ���V (x(t))p .
Instead of (14), such an algorithm provides the condition

V
0(x(t))F (x(t),u(t))  ���V (x(t))p ,

giving an explicit estimate of the convergence rate

V (x(t))  (V (x(0)) + �� (p � 1)t)
1

1�p . (30)

A closer analysis of the proofs reveals that all statements from
Subsect. 3.2, including the dwell time positivity criterion from The-
orem 3.13, retain their validity for such a modi�ed algorithm.

3.3.2 Safety-critical control. For many safety-critical systems,
such as e.g. autonomous robots, smart factories and power grids,
safety has to be provided by the control design. Often the require-
ment of safety can be mathematically described as avoiding of some
“dangerous” set D by the solution x(t) < D. As has been demon-
strated in [32], in many situation the stabilization problem with
this additional restriction can be solved by using control Lyapunov-
Barrier functions (CLBF). We do not consider here the general de�-
nition of CLBF from [32] and only formulate a simple result, con-
cerned with safe stabilization. As usual, IntD denotes the interior
of the set D, and @D stands for its boundary.

L���� 3.14. LetD ⇢ Rn \ {0} stand for the closed set of “danger-
ous” states, we assume that D = IntD. Suppose that a CLFV (x) also
serves as a barrier certi�cate in the sense that for any � 2 @D one
has V (� ) � �⇤ > 0. Then for any x(0) < D such that V (x(0)) < �⇤,
the event-triggered algorithm (18) provides safety x(t) < D.

P����. Indeed, the design of the algorithm provides that (14)
holds along any solution, in particular,V (x(t)) < �⇤. Therefore, the
solution cannot cross the boundary of the set D. ⇤

In particular, if the assumptions of Theorem 3.13 are valid, the
algorithm (18) provides exponential event-triggered stabilization
with guaranteed safety whenever x(0) < D and V (x(0)) < �⇤.
Obviously, the exponential convergence (11) can be replaced by (29).

4 EXAMPLES
We illustrate algorithm (18) by considering two examples.

4.1 Example 1. Event-triggered backstepping
Event-triggered control proves to be an important tool in design
of cooperative control algorithms for automated driving, where
communication between the vehicles is seriously restricted by the
wireless network bandwidth [13, 14]. In this subsection, we consider
a simpli�ed problem of two vehicle platoons merging [12]. Assume

that the lead platoon (Fig. 2) travels at constant speed �0 > 0, an
algorithm is wanted allowing the follower (trail) platoon to merge
safely with it. Denoting the velocity of the trail platoon’s leader by
�(t) and its distance to the lead platoon (Fig. 2) by d(t), the merging
goal can be formulated as follows [12]

d(t) � d0 ����!t!1
0, �(t) ��0 ����!t!1

0, (31)

where d0 is the desired safe inter-vehicle distance. In general, more
complicated speed control policies are required [1], ensuring safety
in the case where the lead platoon applies emergency braking. Such
merging algorithms are beyond the scope of this paper.

Figure 2: Two platoons merging

Our goal is to design the algorithm for the leading vehicle of
the trail platoon, providing the control goal (31). Unlike [12], deal-
ing with highly nonlinear controllers for the throttle and braking
systems of the vehicle, we suppose that the vehicle’s longitudinal
dynamics can be approximated [38] by the equation

� (�) €a(t) + a(t) = u(t). (32)

Here a(t) = €�(t) is the leading vehicle’s actual acceleration, whereas
u(t) can be treated as the desired acceleration command. Note
that, in general, the system (32) is nonlinear due to the presence
of function � (�), depending on the dynamics of the servo-loop
and characterizing time lag between the commanded and actual
accelerations. We suppose that � (�) is known, the trail platoon’s
leader measures d(t),�(t),a(t) and is aware of the lead platoon’s
speed �0.

To design an ES-CLF for this stabilization problem, we use the
well-known backstepping procedure [22, 24]. Choosing a parameter
k > 1, we introduce the new state variables x1,x2,x3 as follows

x1(t)
�
= d(t) � d0, x2(t)

�
= €x1(t) + kx1(t) = (�0 ��(t)) + kx1(t)

x3(t)
�
= €x2(t) + kx2(t) = �a(t) + 2k(�0 ��(t)) + k2x1(t).

By noticing that �0 � �(t) = x2 � kx1 and a(t) = 2kx2(t) �
k
2
x1(t) � x3(t), the equations (32) are rewritten as follows

€x1 = x2 � kx1

€x2 = x3 � kx2

€x3 = k2[x2 � kx1]+
+ [� (�)�1 � 2k](2kx2 � k

2
x1 � x3) � � (�)�1u

� = �0 � (x2 � kx1).

(33)

The backstepping procedure implies thatV (x) = 1
2 (x21 + x

2
2 + x

2
3 ) is

the ES-CLF for the system (33), associated with the controller

U(x) �
= � (�)k2[x2 � kx1] + [1 � 2k� (�)](2kx2 � k

2
x1 � x3) � x1 + kx3.
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A straightforward computation shows that

F (x ,U(x)) = (x2 � kx1,x3 � kx2,x1 � kx3)>,
V
0(x)F (x ,U(x)) = �2(k � 1)V (x)�

� 1
2
[(x1 � x2)2 + (x1 � x3)2 + (x2 � x3)2],

entailing (11) with � = 2(k � 1). It can be easily shown that all
assumptions of Theorem 3.13 (in particular, (26)) hold. The algo-
rithm (18) is an event-triggered controller for platoons’ merging.

In Fig. 3, we simulate the behavior of the algorithm (18) with
� = 0.9, choosing k = 1.005 and � = 0.5s . The initial condi-
tion corresponds to the situation where x1(0) = d(t) � d0 = 10,
x2(0) = kx1(0), x3(0) = k2x1(0). In other words, at the initial time
the trail platoon has the same speed as the lead platoon �(0) = �0,
a(0) = 0, whereas the distance to the lead platoon exceeds the
desired reference value by 10m. One may notice that the maneuver
of the trail platoon’s leader includes a short period of “harsh” brak-
ing, which causes discomfort for human occupants of the vehicle.
Vehicle platooning under realistic safety and comfort constraints is
a non-trivial problem, which is beyond the scope of this paper.

4.2 Example 2. Non-exponential stabilization
Our second example is borrowed from [4] and deals with a two-
dimensional homogeneous system

€x1 = �x31 + x1x
2
2 ,

€x2 = x1x
2
2 + u � x

2
1x2

(34)

The quadratic formV (x) = 1
2 [x21 +x

2
2 ] is not an ES-CLF, however,

it satis�es (29) with p = 2, whereU(x) = �x32 � x1x22 since

V
0(x)F (x ,U(x)) = �x41 � x

4
2  �V 2/2.

According to (30), the event-triggered algorithm (18) provides the
stabilization with the convergence rate

V (x(t))  [V (x(0)) + �t/2]�1 . (35)

To compare our algorithm with the one reported in [28], we
simulate the behavior of the system for x1(0) = 0.1,x2(0) = 0.4,
choosing � = 0.9. The results of numerical simulation (Fig. 4) are
very similar to those presented in [28]. Although the convergence of
the solution is slow (V (x(t)) = O(t�1), and hence |x(t)| = O(t�1/2)),
its second component (and thus also the control input) converges
very fast. During the �rst 200s, only two events are detected at
times t0 = 0 and t1 ⇡ 5.26, after the second event the control input
is u(t) ⇡ �6 · 10�7. Unlike the controller from [28], based on the
Sontag formula [36], our algorithm provides the explicit estimate
of the solution’s convergence rate (30).

5 CONCLUSION
In this paper, we address the following fundamental question: let
a nonlinear system admit a control Lyapunov function (CLF), cor-
responding to a continuous-time stabilizing controller. Does this
imply the existence of an event-triggered controller, also providing
exponential convergence? Under certain natural assumptions, we
give an a�rmative answer and show that such a controller in fact
also provides the positive dwell time between consecutive events,
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Figure 3: Event-triggered stabilization of system (33)

and the convergence rate of the closed-loop system can be arbitrar-
ily close to the continuous time system’s rate. The results remain
valid for non-exponentially stabilizing CLFs, that provide polyno-
mial convergence rate. Two examples are considered, illustrating
application of the proposed method to nonlinear systems.

Although the existence of CLFs often can be derived from the in-
verse Lyapunov theorems, to �nd a CLF satisfying Assumptions 3.8-
3.10 is a non-trivial problem; computational approaches to cope
with it are subject of ongoing research. Finally, it should be noted
that the CLF method is not the only approach to event-triggered
control of nonlinear system, e.g. in [26] an impulsive event-triggered
controller, exponentially stabilizing a nonlinear system, has been
proposed. Unlike our controller, this controller leads to discontin-
uous trajectories x(t) (at each sampling instant, the continuous
dynamics is stopped and restarted in another point) and imposes
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Figure 4: Event-triggered stabilization of system (34)

some other limitations, e.g. the system has to be fully actuated with
globally Lipschitz right-hand side.
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A PROOF OF LEMMA 3.12
We start with several technical propositions, establishing some
useful properties of the solution to a general Cauchy problem (19).
Throughout this subsection, we assume that Assumptions 3.8-3.10
hold. Henceforth we always assume that in (19) u⇤ = U(x⇤) and
�0 2 B(x⇤). Denoting the (unique) solution to (19) by � (t |�0,u⇤),
let t⇤(�0,u⇤) > 0 stand for the �rst instant t whenW (� (t),u⇤) =
���V (� (t)) and �⇤(�0,u⇤) = [0, t⇤(�0,u⇤)]. If such an instant does
not exist, we put t⇤(�0,u⇤) = 1 and�⇤ = [0,1). The solution � (t) =
� (t |�0,u⇤) is well de�ned on �⇤(�0,u⇤) thanks to Proposition 3.4,
and � (t) 2 B(�0) since €V (� (t)) =W (� (t),u0)  0 on �⇤(�0,u⇤).

P���������� A.1. For any �0 2 B(x⇤), u⇤ = U(x⇤) and t 2
�⇤(�0,u⇤), the vector � (t) = � (t |�0,u⇤) satis�es the inequalities:

|� (t) � �0 |  c(t ,x⇤)|F (�0,u⇤)|,
|F (� (t),u⇤)|  (1 + c(t ,x⇤))|F (�0,u⇤)|,

c(t ,x⇤)
�
=

 
e
(2�(x⇤)+1)t � 1
2�(x⇤) + 1

!1/2
.

(36)

Here �(x⇤) is the Lipschitz constant from (23).

P����. Let �(t) �
= |� (t) � �0 |2/2. By noticing that €�(t) = (� (t) �

x⇤)>F (� (t),u⇤), one arrives at the inequality

€�(t) = (� (t) � �0)>[F (� (t),u⇤) � F (�0,u⇤)]+

+ (� (t) � �0)>F (�0,u⇤)  2�(x⇤)�(t) + �(t) +
|F (�0,u⇤)|2

2
(by assumption, that �0 2 B(x⇤), and hence � (t) 2 B(x⇤) for any t 2
�⇤(�0,u⇤)). The usual comparison lemma implies that �(t)  �(t),
where �(t) is the solution to the Cauchy problem

€�(t) = [2�(x⇤) + 1]�(t) +
|F (�0,u⇤)|2

2
, �(0) = �(0) = 0.

Obviously, �(t) = c(t ,x⇤)2 |F (�0,u⇤)|2/2, which entails the the �rst
inequality in (36). The second inequality is immediate from (23)
since |F (� (t),u⇤)|  |F (�0,u⇤)| + �(x⇤)|� (t) � �0 |. ⇤

To simplify the estimates for the minimal dwell time, we will
use the following simple inequality for the function c(t ,x⇤).

P���������� A.2. If 0  t  (1 + 2�(x⇤))�1, then

c(t ,x⇤) 
p
te 

p
e . (37)

P����. Denoting for brevity � = �(x⇤), the statement follows
from themean value theorem, applied to the function e(2�+1)t . Since
e
(2�+1)t � 1 = t(2� + 1)e(2�+1)t0 , t0 2 (0, t),

c(t ,x⇤)2 =
e
(2�+1)t � 1
2� + 1

= te
(2�+1)t0  te

(2�+1)t  te  e,

which implies the inequalities (37). ⇤

C��������A.3. Let �0 2 B(x⇤),u⇤ = U(x⇤) and � (t) = � (t |�0,u⇤),
where t 2 �⇤(�0,u⇤) \

⇥
0, (1 + 2�(x⇤))�1

⇤
. Then

|W (� (t),u⇤) �W (�0,u⇤)| 


p
tµ(x⇤)

⇣
|V 0(�0)| |F (�0,u⇤)| + |F (�0,u⇤)|2

⌘
,

µ(x⇤)
�
= e

1/2 max
�
�(x⇤), (1 +

p
e)� (x⇤)

 
.

(38)

Here � (x⇤) is the Lipschitz constant from (24).

P����. Recalling that � = � (t) 2 B(�⇤), one has
|W (� (t),u⇤) �W (�0,u⇤)|  |

�
V
0(� (t)) �V

0(�0)
�
F (� (t),u⇤)|+

+|V 0(�0) (F (� (t),u⇤) � F (�0,u⇤)) |
(23), (24)



� (x⇤)|� (t) � �0 | |F (� (t),u⇤)| + �(x⇤)|V 0(�0)| |� (t) � �0 |
(36)


� (x⇤)c(t ,x⇤)(1 + c(t ,x⇤))|F (�0,u⇤)|2+

+�(x⇤)c(t ,x⇤)|V 0(�0)| |F (�0,u⇤)|
(37)



p
te

⇣
�(x⇤)|V 0(�0)| |F (�0,u⇤)| + � (x⇤)(1 +

p
e)|F (�0,u⇤)|2

⌘
.

The inequality (38) now follows from the de�nition of µ(x⇤). ⇤

With some abuse of notation, let t⇤(x⇤)
�
= t⇤(x⇤,u⇤) and �(x⇤)

�
=

�(x⇤,u⇤). Substituting �0 = x⇤ into the inequality (38), one obtains
the following proposition.

P���������� A.4. For an arbitrary � 2 (0, 1) and x⇤ , 0 let

�̃� (x⇤) = min
⇢

(1 � � )2
µ(x⇤)2M(x⇤)2

,
1

1 + 2�(x⇤)

�
> 0. (39)

Then t⇤(x⇤) � �̃� (x⇤) and for any t 2 [0, �̃� (x⇤)) the solution � (t) =
� (t |x⇤,u⇤) (where u⇤ = U(x⇤)) satis�es the following inequalities

W (� (t),u⇤) < �W (x⇤,u⇤) < ���V (� (t)). (40)

P����. For any t 2 �⇤(x⇤) \ [0, (1 + 2�(x⇤))�1), one has

|W (� (t),u⇤) �W (x⇤,u⇤)|
(26), (38)


p
tµ(x⇤)M(x⇤)|V 0(x⇤)F̄ (x⇤)|

(13)
=

p
tµ(x⇤)M(x⇤)|W (x⇤,u⇤)|.

(41)
For any t < (1 � � )2/(µ(x⇤)M(x⇤))2 one has

p
tµ(x⇤)M(x⇤) < 1 � �

due to (39). Inequality (41) and de�nition (39) entail that
€V (� (t)) =W (� (t),u⇤) <W (x⇤,u⇤) + (1 � � )|W (x⇤,u⇤)| =

= |W (x⇤,u⇤)|(�1 + 1 � � ) = �W (x⇤,u⇤)
(11)
 ���V (x⇤) < 0.

(42)

whenever t < min(t⇤,�� (x⇤)). By noticing that V (� (t)) < V (x⇤)
and thus ���V (� (t)) > ���V (x⇤), one shows that (40) holds for
t < min(t⇤,�� (x⇤)). By de�nition, we either haveW (� (t⇤),u⇤) =
��V (� (t⇤)) or t⇤ = 1; hence t⇤ � �̃� (x⇤), which ends the proof. ⇤

Proof of Lemma 3.12
Let �� (x) stand for the function (39). The inequality (27) follows

from Proposition A.4. Recalling that �(x),� (x),M(x) are locally
bounded, which is also valid for µ(x) and �(x), (39) implies that
�� (x) is uniformly positive on any compact set. If the functions
�(x),� (x),M(x), �(x) are globally bounded, the same holds for µ(x)
and �� (x) is uniformly positive over all x 2 Rn . ⇤


