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Abstract— Asynchronous event-triggered control
(AETC) is a triggering strategy for the feedback channel
of a closed-loop control system. AETC aims at reducing
transmissions compared with time-triggered control
strategies and listening time compared with other event-
triggered control strategies. This work is an extension of
the asynchronous event-triggered control [6] on reducing
periodic listening time spent for the threshold update
signal. In this work, by introducing an autonomous
time-varying threshold update mechanism at every
node, the listening time can totally be removed while
still guaranteing a pre-designed control performance. A
numerical example is shown to illustrate the developed
strategy.

I. INTRODUCTION

In digital control implementations, the control task
includes: plant output sampling and transmition, and
controller output computation and application. All these
processes consume system resources. These resources
may include wireless channel bandwidth, mobile node
energy, or CPU utilization rate, among others. In net-
worked control systems (NCSs), especially wireless net-
worked control systems (WNCSs), it is important to
save these system resources to attain reduced costs of
deployment and operation.

Compared with the traditional time-triggered control
(TTC) task execution model, in which the tasks are
executed periodically, event-triggered control (ETC) task
execution, such as [1] [2] [4] [5] [6] [8] [10] [11] [12],
can reduce transmissions in the feedback channel and
controller output computations.

In [6], an asynchronous event-triggered control
(AETC) strategy is presented. This strategy has two
event-triggered mechanisms: a sampling update mecha-
nism and a threshold update mechanism. By comparing
local measurements of the state and a local threshold,
each sensor node can determine local events and up-
date the corresponding sampled-and-hold state in the
controller independently of each other. The controller
updates the threshold based on the current sampled state
and broadcasts this update signal to all sensor nodes.
Only one bit is required in each transmission, indicating
the existence of the event and the sign of the error
(for the sampling update mechanism). Therefore, the
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required number of transmissions, and bit length of each
packet can both be reduced. The work in [3] presents
an algorithm to maximize the sampling intervals of the
states while guaranteeing a pre-designed performance.

This AETC has been proven to reduce transmis-
sions compared to TTC guaranteeing the same per-
formance [7]; while it does not require the sensor
nodes continuously listening to the feedback channel
as other ETC strategies. However, it still requires the
sensor nodes listening for the threshold update signal
periodically, which still consumes a significant amount
of energy.

In this work, we replace the event-based threshold
update mechanism by an autonomous time-varying one.
By autonomous time-varying threshold update mecha-
nism we refer to triggering thresholds governed by an
autonomous differential equation. Since the sampling
update mechanism is still event-based, we call this
triggering mechanism as mix-triggered, indicating the
combination of event-triggered and autonomous time-
varying.

II. NOTATION AND PRELIMINARIES

We denote the positive real numbers by R+, the
positive real numbers together with 0 by R+

0 , the natural
numbers including zero by N. | · | denotes the Euclidean
norm in the appropriate vector space, when applied to a
matrix | · | denotes the l2 induced matrix norm. A matrix
P ∈ Rn×n is said to be positive definite, denoted by
P � 0, whenever xTPx > 0 for all x 6= 0, x ∈ Rn. A
function α: R+ → R+ belongs to class K(α ∈ K) if:
α is a continuous function, α(0) = 0 and s1 > s2 ⇒
α(s1) > α(s2). A function α: R+ → R+ belongs to
class K∞(α ∈ K∞) if: α ∈ K and lim

s→∞
α(s) = ∞. A

function α: R+ → R+ belongs to class L(α ∈ L) if:
α is a continuous function, s1 ≥ s2 ⇒ α(s1) ≤ α(s2)
and lim

s→∞
α(s) = 0. A function α: R+ → R+ belongs

to class KL(α ∈ KL) if: ∀(fixed)t : β(·, t) ∈ K and
∀(fixed)s : β(s, ·) ∈ L. For matrix P , λmax(P ) and
λmin(P ) are the maximum and minimum eigenvalue of
P respectively.

Consider a linear time-invariant system

ξ̇(t) = Aξ(t) +Bv(t), (1)

where ξ(t) ∈ Rn is the state vector and v(t) ∈ Rm is



the input vector at time t. A controller is given by:

v(t) = Kξ(t), (2)

in which K is given such that A + BK is Hurwitz.
The system is completely observable. Each sensor only
can access to one of the states. Furthermore, a sample-
and-hold implementation is assumed to apply to the
controller:

v(t) = Kξ̂(t), (3)

where

ξ̂(t) := [ξ̂1(t), ξ̂2(t), · · · , ξ̂n(t)]T

ξ̂i(t) := ξi(t
i
ki), t ∈ [tiki , t

i
ki+1), ∀i = 1, · · · , n.

(4)

Define
εi(t) := ξ̂i(t)− ξi(t), (5)

the measurement error of each state. This measurement
error is the result of the sample-and-hold mechanism.

Before the problem definition, we present some prop-
erties of a closed-loop system that we discuss in this
paper.

Definition 1. (Asymptotic Stability) [9]
The system (1), (3), (4) is said to be uniformly globally

asymptotically stable (UGAS) if there exists β ∈ KL
such that for any t0 ≥ 0 the following holds:

∀ξ(t0) ∈ Rn, |ξ(t)| ≤ β(|ξ(t0)|, t− t0),∀t ≥ t0. (6)

Definition 2. (Exponential Stability) [4] [9]
The system (1), (3), (4) is said to be globally exponen-

tially stable (GES) if there exists c, a ∈ R+ such that
for any t0 ≥ 0 the following holds:

|ξ(t, ξ(0))| ≤ c|ξ(0)|e−at,∀t ≥ t0. (7)

We call a a lower bound on the decay rate. The system
(1), (3), (4) is said to be uniformly globally exponentially
stable (UGES) if there exists c, a ∈ R+ such that for any
t0 ≥ 0 the following holds:

∀ξ(t0) ∈ Rn, |ξ(t, ξ(0))| ≤ c|ξ(0)|e−at,∀t ≥ t0. (8)

Definition 3. (Input-to-State Stability) [9]
The system (1), (3), (4) is said to be (uniformly globally)
input-to-state stable (ISS) with respect to v if there exists
β ∈ KL, γ ∈ K∞ such that for any t0 ∈ R+

0 the
following holds:

∀ξ(t0) ∈ Rn, ‖v‖∞ <∞⇒
|ξ(t)| ≤ β(|ξ(t0)|, t− t0) + γ(‖v‖∞),∀t ≥ t0.

(9)

The ISS property of a system can also be established
by means of ISS-Lyapunov functions, i.e. a system is ISS
if and only if a smooth ISS-Lyapunov function exists [9].

Definition 4. (ISS Lyapunov function) [9]
A continuously differentiable function V : Rn → R+

0 is
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Fig. 1. Networked systems architecture, with decentralized event-
triggered mechanism (ETM).

said to be an ISS Lyapunov function for the closed-loop
system (1) (3) (4) if there exists class K∞ functions α,
α, αV and αv such that for all ξ ∈ Rn and v ∈ Rm the
following is satisfied:

α(|ξ(t)|) ≤ V (ξ(t)) ≤ α(|ξ(t)|)
∇V · f(ξ, v) ≤ −αV ◦ V (ξ(t)) + αv(|v(t)|).

(10)

III. PROBLEM DEFINITION

The architecture of the system is shown in Figure 1.
Assume this system has all of its sensors distributed on
a large physical scale. Each sensor is co-located with
a network node, formalizing a sensor node. All sensor
nodes are connected with the controller via a network.
The actuators are co-located with the controller, which
is denoted as the controller node.

A decentralized event-triggered control strategy
(AETC in our case) is applied to this system. That
is, each sensor node is co-located with a local event-
triggered mechanism (ETM). Local means, these ETMs
are only based on local information, and produce events
independently of each other.

The AETC from [6] is reviewed here. There are two
event-triggered mechanism in this strategy: sampling
update mechanism and threshold update mechanism.
The sampling update mechanism executes in each sensor
node determines the sampling time of each state:

tiki := min{t > tiki−1|ε2
i (t) = ηi(t)}, (11)

where ηi(t) := θ2
i η(t)2 is the local threshold; η(t) is

a global threshold. θ is a pre-designed parameter that
determines the computation of each local threshold from
the global threshold. It satisfies |θ| = 1.

Assumption 1. An initial state is pre-stored in the
controller such that ε2

i (t) ≤ ηi(t), i = {1, · · · , n} hold.



If there is a sampling event at sensor i, the correspond-
ing estimated state in the controller is then updated as:

ξ̂i(t
i
ki) = ξ̂i(t

i
ki−1) + sign(εi(t

i
ki))
√
ηi(tiki). (12)

The threshold update mechanism executed in the
controller determines the threshold update time of the
global threshold:

tcrc+1 := min{t ≥ tcrc + rτc|r ∈ N+, |ξ(t)| ≤ ρη(tcrc)},
(13)

where ρ ∈ R+ is a pre-designed parameter, satisfying
ρs ≥ α−1 ◦ εα−1

v ◦ αe(s) + 2s, for all s ∈ (0, η(t0)].
The estimate |ξ(t)| is an upper bound of |ξ(t)|, defined
as |ξ(t)| := |ξ̂(t)| + η(t). This estimate is needed
because the controller does not know the current value of
|ξ(t)|. Note that the estimate satisfies |ξ(t)| = |ξ̂(t)| +
η(t) ≤ |ξ(t)| + 2η(t). τc is a pre-designed parameter
specifying when to check for threshold updates. This
periodic checking avoids the need for the sensor nodes
to continuously listen to the channel, so as to reduce the
large amount of energy consumption spent on listening.
When there is a threshold update event, the global
threshold is updated as

η(tcrc+1) = µη(tcrc)

η(t0) ≥ µρ−1α−1 ◦ V (ξ(t0)),
(14)

where µ ∈ (0, 1) is a pre-designed parameter. With this
new global threshold, each sensor node can compute its
current local threshold.

When there is an event from either event-triggered
mechanism, only one bit is required for each transmis-
sion, whose transmission indicates the event. Further-
more, for the sampling update mechanism, the content
of this bit indicates the sign of the error.

This AETC can largely reduce the amount of trans-
missions, the length of each transmission, and the listen-
ing time of each sensor node. However, it still requires a
remarkable amount of energy, because of the existence
of the extra threshold update mechanism: the sensor
nodes still need to wake up and listen to the channel
periodically.

Now we state the main problem we solve in this paper:

Problem 1. Design an autonomous time-varying thresh-
old update mechanism for η(t) such that the system (1),
(3), (4), (11), and (12) is UGES with λ a lower bound
on the decay rate.

IV. MAIN RESULT

Consider a Lyapunov function for system (1), (3), (4),
(5), (11), and (12) with the following form:

V (t) := xTPx. (15)

Note that, for this linear system and the Lyapunov
function V defined in (15), Definition 4 applies with

scalars a1, a2, a3, a4 ∈ R+, such that, the following
inequations hold:

a1|x|2 ≤ V (t) ≤ a2|x|2

V̇ (t) ≤ −a3V (t) + a4|e|2.
(16)

For system (1), (3), (4), (5), (11), (12), and (15), an
autonomous time-varying threshold update mechanism
is designed as:

η̇(t) = −λη(t)

η(0) =

√
ω
a3 − 2λ

a4
V (0),

(17)

where ω ∈]0, 1] a pre-designed parameter, λ :< a3
2 .

Design a reference function Ṽ (t) satisfying:
˙̃V (t) = −2λṼ (t)

Ṽ (0) = V (0).
(18)

Lemma IV.1. Consider the system (1), (3), (4), (5),
(11), (12), and (15), with threshold update mechanism
(17), and reference function Ṽ (t) defined in (18), ∀t ∈
R+

0 , V (t) ≤ Ṽ (t).

Proof. According to (11), ∀t ∈ R+
0 , |ε(t)| ≤ η(t).

Therefore, (16) can be rewritten by:

V̇ (t) ≤ −a3V (t) + a4η
2(t). (19)

By integrating V (t) on interval [0, T ], one obtains:

V (T ) ≤
∫ T

0
ea3ta4η

2(t)dt+ V (0)

ea3T
. (20)

From (17), η(t) can be expressed by:

η(t) = e−λtη(0).

Put η(t) back in (20) to obtain:

V (T ) ≤
a4η

2(0)
∫ T

0
e(a3−2λ)tdt+ V (0)

ea3T

=
a4η

2(0) 1
a3−2λ

(
e(a3−2λ)T − 1

)
+ V (0)

ea3T
.

(21)
By equation (18), one has:

Ṽ (T ) = e−2λTV (0).

We can now bound:
V (T )− Ṽ (T )

≤
a4η

2(0)
a3−2λ

(
e(a3−2λ)T − 1

)
+ V (0)

ea3T
− e−2λTV (0)

=

(
a4η

2(0)

a3 − 2λ
− V (0)

)
e−a3T

(
e(a3−2λ)T − 1

)
.

From (17), one has a4η
2(0)

a3−2λ ≤ V (0); from 0 < 2λ <

a3, e−a3T
(
e(a3−2λ)T − 1

)
> 0. Therefore, one can

conclude that

V (t) ≤ Ṽ (t), ∀t ∈ R+
0 ,



which ends the proof.

With Lemma IV.1, now we can state the main result
of this paper:

Theorem IV.2. The system (1), (3), (4), (5), (11), (12),
(15) with threshold update mechanism (17) is UGES
with λ a lower bound on the decay rate.

Proof. From the result of Lemma IV.1, ∀t ≥ 0, V (t) ≤
Ṽ (t) = e−2λtV (0). Together with (16), which shows
that a1|x|2 ≤ V (t) ≤ a2|x|2, one concludes that:

|ξ(t)| ≤
√
a2

a1
e−λt|ξ(0)|.

According to Definition 2, the system is GES with
convergence rate λ.

To finish the proof, one also needs to prove that, the
system is Zeno free. Define κ := |ξ(t)|

η(t) . According to
[6], once κ < ∞ is shown, the system’s Zeno freeness
can be proven.

κ =
|ξ(t)|
η(t)

≤

√
a−1

1 V (t)

η(t)
≤
√
e−2λtV (0)

√
a1e−λtη(0)

=

√
V (0)

√
a1η(0)

=

√
a4

a1ω(a3 − 2λ)
<∞,

where the last inequality comes from (17). This ends the
proof.

Remark. With the designed threshold update mecha-
nism (17), the computation of η(t) only depends on t
and the initial value η(0). Therefore, once all the nodes
have their local clocks synchronised, the initial η(0) pre-
stored, the global threshold can be computed locally.
Thus, the threshold update transmission in AETC from
[6] is not necessary.

V. INITIAL THRESHOLD

From the sampling event condition (11), it is easy to
see that a bigger η(t) increases the inter-event intervals.
As a result, less transmissions are required and less
energy is consumed. Therefore, to find the maximum
η(0) for the threshold update mechanism is important
and necessary.

For the Lyapunov function given by (15), define Ac =
A + BK, Bc = BK, Q = −(AT

c P + PAc). Consider
the following bound:

V̇ (t) = ẋTPx+ xTPẋ

= (Acx+Bce)
TPx+ xTP (Acx+Bce)

= xT(AT
c P + PAc)x+ 2xTPBce

= −xTQx+ 2xTPBce

≤ −λmin(Q)|x|2 + 2|PBc||x||e|.

(22)

Define a5 and a6 satisfying a5a6 = |PBc|. Therefore:

V̇ (t) ≤ −λmin(Q)|x|2 + 2a5a6|x||e|
≤ −λmin(Q)|x|2 + a2

5|x|2 + a2
6|e|2

= −(λmin(Q)− a2
5)|x|2 + a2

6|e|2.
(23)

Note that, also for the Lyapunov function (15):

λmin(P )|x|2 ≤ V (t) ≤ λmax(P )|x|2.

Therefore, V̇ (t) is further bounded by:

V̇ (t) ≤ −λmin(Q)− a2
5

λmax(P )
V (t) + a2

6|e|2. (24)

From which:

a3 =
λmin(Q)− a2

5

λmax(P )
, a4 = a2

6.

Selecting suitable a5 and a6 determines a3 and a4.
By letting ω = 1, one can obtain the maximum η(0),

defined by η̄(0), as:

η̄(0) :=

√√√√
ω

λmin(Q)−a25
λmax(P ) − 2λ

a2
6

V (0). (25)

However, from the computation of a3 and a4, we can
see that η̄(0) is in general very conservative.

Inspired by [3], an LMI is designed to compute η̄(0).
Define σ := η̄(0)

|ξ(0)| . Note that, from now on, η̄(0) is
computed from ξ(0) directly, instead of from V (0) as
suggested by (17).

From (22), we have:

V̇ (t) = xT(AT
c P + PAc)x+ 2xTPBce,

to guarantee V̇ (0) ≤ −2λV (0), one can impose the
following inequation:

ξT(0)(AT
c P + PAc)ξ(0) + 2ξT(0)PBcε(0)

≤ −2λξT(0)Pξ(0).

Rearranging terms one obtains:

ξT(0)(−Q+ 2λP )ξ(0) + 2ξT(0)PBcε(0) ≤ 0. (26)

If Assumption 1 holds, then:

|ε(0)| ≤ η(0) ≤ η̄(0) = σ|ξ(0)|. (27)

Applying the S-procedure, if ∃ε > 0 such that:[
−Q+ 2λP PBc
BT
c P 0

]
+ ε

[
σ2I 0
0 −I

]
� 0

holds, then (27) implies (26).
To find η̄(0), one can instead find the maximum σ by

solving the following optimization problem:

max σ

subject to
[
−Q+ 2λP + εσ2I PBc

BT
c P −εI

]
� 0

ε > 0, P = PT � 0,

(28)



where I is an identity matrix of adequate dimensions.
By now, one can see that, for this mix-triggered

strategy to guarantee exponential stability, η(0) is a key
parameter. The computation of η(0) depends on the
system model.

If the system model is inaccurate, or not available,
one can instead employ the alternative threshold update
mechanism:

η̇(t) = −λη(t)

η(0) ∈]0,∞[.
(29)

Compared with (17), η(0) in (29) is an arbitrary scalar.
Define:

c2 :=
a4η

2(0)

(a3 − 2λ)V (0)
, (30)

where λ :> 0 is a design parameter, that should be tuned
satisfying λ < a3

2 . Note that a sufficiently small λ can
always satisfy this condition. Now, one can rewrite (30)
as:

η(0) =

√
c2
a3 − 2λ

a4
V (0). (31)

Consider the following reference function:

˙̄V (t) = −2λV̄ (t)

V̄ (0) = max{1, c2}V (0).
(32)

Lemma V.1. Consider the system (1), (3), (4), (5),
(11), (12), and (15), with threshold update mechanism
(29), and reference function V̄ (t) defined in (32), ∀t ∈
R+

0 , V (t) ≤ V̄ (t).

Proof. Consider c2 > 1 here, since c2 ≤ 1 has already
been shown in Lemma IV.1. For V (T ), it is easy to
deduce that:

V (T ) ≤
a4η

2(0) 1
a3−2λ

(
e(a3−2λ)T − 1

)
+ V (0)

ea3T

<
a4η

2(0) 1
a3−2λ

(
e(a3−2λ)T − 1

)
+ c2V (0)

ea3T
.

From (32), one can deduce that:

V̄ (T ) = e−2λT V̄ (0) = e−2λT c2V (0).

Therefore:
V (T )− V̄ (T )

<

(
a4η

2(0)

a3 − 2λ
− c2V (0)

)
e−a3T

(
e(a3−2λ)T − 1

)
.

Since a4η
2(0)

a3−2λ − c2V (0) = 0 by definition, one can
conclude that:

V (t) < V̄ (t) = e−2λtc2V (0), ∀t ∈ R+
0 .

This ends the proof.

Theorem V.2. The system (1), (3), (4), (5), (11), (12),
(15) with threshold update mechanism (29) is GES with
λ a lower bound on the decay rate..
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Fig. 2. η(0) = η̄(0), system state; Lyapunov function evolution and
its reference.

Proof. Following the procedure in Theorem IV.2 to-
gether with the result in Lemma V.1, one concludes that:

|ξ(t)| ≤ max {1,
√
c2}
√
a2

a1
e−λt|ξ(0)|.

Which ends the proof.

Remark. Theorem V.2 shows that, with threshold update
mechanism (29), the system is still GES. However, since
c2 is unknown and dependent on ξ(0), one cannot obtain
a uniform bound on the state of the form |ξ(t)| ≤
c|ξ(0)|e−λt.

VI. NUMERICAL EXAMPLE

We illustrate the presented mechanisms in this paper
in a system from [10]. In this system, the matrix A, B
and K are given by:

A =

[
0 1
−2 3

]
, B =

[
0
1

]
, K =

[
1 −4

]
.

The system initial state is given as ξ(0) =
[
0.5 0.4

]T
;

and the performance parameter λ is given as λ = 0.01.
By solving (25), we obtain η̄(0) = 0.0666. By solving
the LMI in (28), we obtain σ = 0.1617, with:

P =

[
0.0058 0.0016
0.0016 0.0058

]
.

Thus, we obtain η̄(0) = 0.1035. One can easily see that
(25) is very conservative.

Design η(0) = η̄(0) = 0.1035 to reduce transmission
and energy consumption. The parameter θ is selected
as θ =

[
0.2357 0.9718

]T
. Fig. 2 shows the evolution

of the asynchronous mix-triggered implementation’s sys-
tem state ξ(t), Lyapunov function V (t) and its reference
Ṽ (t). One can see that V (t) ≤ Ṽ (t), ∀t ∈ R+

0 , as
designed.

Now assume the system model is unknown, we test
η(0) = 0.1η̄(0), η(0) = η̄(0), η(0) = 10η̄(0), and
η(0) = 100η̄(0) separately. Also note that, θ is selected

as θ =
[√

2
2

√
2

2

]T
. The simulation results are shown

in Fig. 3. One can see that for all 4 cases, V (t) ≤
V̄ (t), ∀t ∈ R+

0 , as designed. However, the V̄ (t) in 4



Fig. 3. η(0) = 0.1η̄(0), η(0) = η̄(0), η(0) = 10η̄(0), and
η(0) = 100η̄(0), system states; Lyapunov function evolutions and
their references.

cases are varying. We also compare the transmissions
required for the state to reach a certain accuracy with
different η(0). We analyze the number of transmissions
for different selections of η(0) in the period of time from
initialization with ξ(0) =

[
0.5 0.4

]T
until the state

enters a ball around the origin |ξ(t)| ≤ 10−5. Further
simulations show that, when η(0) = 0.1η̄(0), entering
the ball of radius 10−5 requires 204.8s and 438 events;
when η(0) = η̄(0), it requires 253.2s and 407 events;
when η(0) = 10η̄(0), it requires 388.3s and 502 events;
and when η(0) = 100η̄(0), it requires 480.6s and 771
events. One can see that when η(0) ≤ η̄(0), a smaller
η(0) leads to a faster convergence rate, but more events.

This is in accordance with our statement in the beginning
of Section V. When η(0) > η̄(0), a bigger η(0) results
in longer convergence time, and requires more events. It
seems like selecting exactly η(0) = η̄(0) optimises the
number of events to enter a certain set, but we have no
formal proof of that or guarantee that that would always
be the case, so more research would be needed.

VII. CONCLUSION

We have presented an asynchronous mix-triggered
control strategy. This strategy is an extension of AETC,
with the original event-triggered threshold update mech-
anism replaced by an autonomous time-varying one.
Thus, the transmission of the threshold update signal
is not required any more, and the sensors are no longer
required to listen to the channel. As a result, the energy
of the sensor nodes can be saved. Meanwhile, an LMI
is constructed employing the S-procedure to find the
maximal initial threshold to guarantee UGES. We also
show that the system can still be GES, with uncertain but
bounded initial threshold. All these results are validated
with a numerical example. Our future work includes
considering systems with disturbances, so as to make
the work more practical.
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