
Scheduling of controllers’ update-rates for
residual bandwidth utilization

Majid Zamani1, Soumyajit Dey2, Sajid Mohamed2, Pallab Dasgupta2, and
Manuel Mazo Jr3

1 Technische Universität München
Munich, Germany
zamani@tum.de

2 Indian Institute of Technology
Kharagpur, India

{soumya,sajidm,pallab}@cse.iitkgp.ernet.in
3 Delft University of Technology

Delft, The Netherlands
m.mazo@tudelft.nl

available we provide a construction to obtain the sequence of update intervals
consuming the maximum amount of available bandwidth.

Abstract. We consider the problem of incorporating control tasks on
top of a partially loaded shared computing resource for which the current
task execution pattern is characterizable using a window based pattern.
More specifically, we consider that the control task to be scheduled is
allowed to switch between multiple controllers, each with different asso-
ciated sampling rate, in order to adjust its requirement of computational
bandwidth as per availability.
For the control task, we provide a novel control theoretic analysis that
derives a Timed Automata (TA) based specification of allowable switch-
ings among the different controller options while retaining the asymp-
totic stability of the closed loop. Our scheduling scheme computes a
platform level residual bandwidth pattern from individual task level ex-
ecution patterns. We leverage the TA based controller specification and
the residual bandwidth pattern in order to synthesize a Linearly Priced
Timed Automata for which the minimum cost reachability solution pro-
vides realizable multi-rate control schedules. The provided scheduler not
only guarantees the asymptotic stability of the control loop but also in-
creases the robustness and control performance of the implementation
by maximizing the bandwidth utilization.

1 Introduction

Traditionally, digital implementations of controllers employ constant periodic
sampling and control update mechanisms. Additionally, the engineers designing
such implementations tend to over-provision (communication and/or comput-
ing) bandwidth to the implemented controllers. Two main reasons that justify
sampling as fast as possible in a controller implementation are as follows, (i) the

control engineer is allowed to design a controller with traditional continuous time
tools without worrying about the specific selection of sampling times; SD: when
we talk of control implementation on loaded ECU, the RTOS already restricts
the allowable scheduling periods and, (ii) the faster the sampling, the quicker a
controller can react to external disturbances to the system under control. How-
ever, current trends for the implementation of complex cyber-physical systems
are shifting from traditional federated architectures, where each feature runs on
a dedicated Electronic Control Unit (ECU), to integrated architectures, where
multiple features execute on a shared ECU. Thus, instead of over-provisioning
resources, these new architectures demand flexibility and efficiency in the use
of resources. In a modern automobile, for instance, features may be engaged
and disengaged dynamically depending on the state of the system. Take as an
example the processing of data from the rear parking sensors, which is not nec-
essary when the gear position is in the forward direction. When a feature is
not engaged, the residual bandwidth made available by the tasks omitted for
that feature can be potentially harnessed by the other features running on the
same processor. Such plug-and-play nature of control features is recommended
by modern automotive standards like AUTOSAR [24], and is also being adopted
in cyber-physical system architectures beyond the automotive domain.

In the current paper we consider architectures in which a simple ECU ex-
ecutes a set of tasks. We assume that tasks are described by arrival patterns
expressed in Real Time Calculus (RTC), and the scheduling scheme is known for
the system. This allows us to find periodic upper bounds on the ECU utiliza-
tion and compute a recurring pattern of bandwidth availability. We address the
problem of scheduling a control task in such a shared ECU under the described
assumptions. The goal of the controller scheduler that we design is to maximize
the use of the available bandwidth for the newly added control task. The reason
to seek maximizing the use of the available bandwidth is to achieve the highest
possible performance in terms of disturbance rejection, as argued earlier. For a
small set of tasks with relatively simple periodic specifications, the methodology
is lightweight enough to be considered as an online scheduler which can deal
with task characterization changing dynamically.

In our solution, we consider control tasks with the ability to select their up-
date (periodic) frequency and we name them “variable-rate” control tasks. This
can be achieved by associating to each control task a set of controllers each re-
quiring a different update frequency. These differ from other aperiodic control
alternatives, such as event-triggered [21] (ETC) or self-triggered [3] (STC) con-
trol implementations, in that the execution times SD: do you mean pattern of
our controllers is a controllable parameter, as opposed to being dictated by the
plant in ETC or STC. Thus in our proposal, once the pattern of ECU availability
is known, the scheduler can select a sequence of controllers, with their associated
update frequencies, so that the stability of the control task is guaranteed and
simultaneously the available resource utilization is maximized. As we explain
later, this choice, unless exercised judiciously, can result in system instability
and suboptimal utilization of ECU bandwidth.

Technically, the variable-rate control systems we consider are switched
sampled-data systems. The switching signal determines the closed-loop dynam-
ics through the selection of a controller and an associated sampling time. The
stability analysis of switched systems has been studied in depth [6,11] and, as
pointed out before, it is well known that not every possible switching sequence
results in stable closed-loops, even when switching between stable systems (as is
our case). Much work has also been devoted in recent years to the computation of
adequate sampling intervals to retain the stability of closed-loops under sample-
and-hold controller implementations [14,21]. Here we leverage ideas from both
the literature on switched systems and sampled-data systems, to construct a
timed automaton dictating when switching to a different controller (also termed
mode) is allowed in order to retain stability of the closed-loop. In turn, this au-
tomaton implicitly defines a switched sequence of sampling rates that results in
stable operation of the system. In this sense, the type of abstraction provided
in the current paper resembles the one proposed in [18] for scheduling event-
triggered systems. This automaton can be referenced by the scheduler to affect
the switching between the sampling modes without having to compute dwell time
constraints at runtime. To this end we leverage tools from linearly priced timed
automata [17,4] to synthesize schedulers that maximize the resource utilization.

The idea of using multiple sampling rates to schedule control loops is not new
and has been investigated previously. In [9] sampling schedules are synthesized
first, and an iterative procedure is proposed to synthesize a unique controller
that would result in stable operation. However, the algorithm proposed is highly
heuristic and no guarantees are provided that such a controller will be found. A
different approach is taken in [16] by constructing automata that provide state-
based conditions forcing a change of the controller update frequency. The main
shortcoming of their approach is that no proof is provided for the stability of the
system across transitions. Closer to our proposal are the works [23,8] in which
automata are constructed representing mode switches retaining stability of the
system. These automata are then employed to perform compositional analysis to
synthesize schedulers for specifications given in the form of ω-regular languages.
Their proposed methodology can be applied to a variant of our problem if each
of the modes in that work is considered as the discrete model associated to a
controller with a specific sampling time. The main differences of the present work
with those stem from the abstractions employed for the mode switches. While
in [23,8] it is implicitly assumed that switches between modes occur exactly
at the sampling instants dictated by the current mode, our model allows for
switches not synchronized with the sampling period of the current mode. More
importantly, our approach is directly applicable to non-linear systems and we
extend our objective to not only guaranteeing closed-loop stability, but also to
additionally maximize the utilization of the available resources. Also very closely
related to our work and [23,8], is the work from [?,?] developing anytime control
algorithms. In [?,?], and subsequent publications, schedulers are designed that
are capable of resolving a trade-off between quality of control (measured as a
stochastic notion of stability) and bandwidth utilization, all under a stochastic

scheduling framework in which the availability of the channel is modeled in
a probabilistic fashion. The main limitation of this line of work is again its
restricted applicability to linear time-invariant systems. In summary, the key
contributions of this work can be listed as follows.

1. We provide a methodology for deriving timing specifications for variable-rate
control tasks. SD: check

2. We provide a methodology for scheduling such tasks on partially loaded
ECUs while maximizing the control robustness SD: check.

3. We create a tool-flow that can take as input the control theoretic model of
a variable-rate controller, the existing task loading pattern of an ECU and
compute a schedule for the incoming control task.

2 Notation and Preliminaries

2.1 Notation

The symbols N, N0, Q+
0 , R, R+, and R+

0 denote the set of natural, nonnegative
integer, nonnegative rational, real, positive, and nonnegative real numbers, re-
spectively. The symbols In, 0n, and 0n×m denote the identity matrix, zero vector,
and zero matrix in Rn×n, Rn, and Rn×m, respectively. Given a vector x ∈ Rn,
we denote by ‖x‖ the Euclidean norm of x, namely, ‖x‖ =

√
x2

1 + x2
2 + · · ·+ x2

n.
Given a matrix M = {mij} ∈ Rn×m, we denote by ‖M‖ the induced two norm

of M , namely, ‖M‖ =
√
λmax(MTM), where λmax(A) denotes the maximum

eigenvalue of a symmetric matrix A. A continuous function γ : R+
0 → R+

0 , is said
to belong to class K if it is strictly increasing and γ(0) = 0; γ is said to be-
long to class K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous function
β : R+

0 × R+
0 → R+

0 is said to belong to class KL if, for each fixed s, the map
β(r, s) belongs to class K with respect to r and, for each fixed nonzero r, the
map β(r, s) is decreasing with respect to s and β(r, s) → 0 as s→∞. Given a
measurable function f : R+

0 → Rn, the (essential) supremum of f is denoted by
‖f‖∞. Given a tuple S, we denote by σ := (S)ω the infinite sequence generated
by repeating S infinitely, i.e. σ := SSSSS

2.2 Control systems

The class of control systems considered in this paper is defined as:

Definition 1. A control system Σ is a tuple Σ = (Rn,U,U , f), where Rn is the
state space, U ⊆ Rm is the input set, and

– U is a subset of the set of all measurable functions of time, from intervals of
the form]a, b[⊆ R to U, with a < 0 and b > 0;

– f : Rn × U→ Rn is a continuous map satisfying the following Lipschitz as-
sumption: for every compact set Q ⊂ Rn, there exists a constant Z ∈ R+

such that ‖f(x, u)− f(y, u)‖ ≤ Z‖x− y‖ for all x, y ∈ Q and all u ∈ U.

A locally absolutely continuous curve ξ :]a, b[→ Rn is said to be a trajectory of
Σ if there exists υ ∈ U satisfying ξ̇(t) = f (ξ(t), υ(t)) for almost all t ∈]a, b[. We
shall as well refer to trajectories ξ :[0, t]→ Rn defined on closed intervals [0, t],
t ∈ R+, with the understanding of the existence of a trajectory ξ′ :]a, b[→ Rn
such that ξ = ξ′|[0,t] with a < 0 and b > t. We also write ξxυ(t) to denote the
point reached at time t under the input υ from the initial condition x = ξxυ(0);
the point ξxυ(t) is uniquely determined due to the assumptions on f [19].

A control system Σ is said to be forward complete if every trajectory is
defined on an interval of the form]a,∞[. Standard sufficient and necessary con-
ditions for a control system to be forward complete can be found in [2].

In the remainder of this paper we assume f(0n, 0m) = 0n which implies that
0n is an equilibrium point for a control system Σ = (Rn, {0m},U , f). Here, we
recall two stability notions, introduced in [12], as defined next.

Definition 2. A control system Σ = (Rn, {0m},U , f) is globally asymptotically
stable (GAS) if it is forward complete and there exist a KL function β such that
for any t ∈ R+

0 and any x ∈ Rn, the following condition is satisfied:

‖ξxυ(t)‖ ≤ β (‖x‖ , t) , (2.1)

where υ(t) = 0m for any t ∈ R+
0 .

Definition 3. A control system Σ = (Rn,U,U , f) is input-to-state stable (ISS)
with respect to inputs υ ∈ U if it is forward complete and there exist a KL
function β and a K∞ function γ such that for any t ∈ R+

0 , any x ∈ Rn, and any
υ ∈ U , the following condition is satisfied:

‖ξxυ(t)‖ ≤ β (‖x‖ , t) + γ (‖υ‖∞) . (2.2)

It can be readily seen, by observing (2.1) and (2.2), that ISS implies GAS
by restricting the set of inputs to {0m}. Note that a linear control system ξ̇ =
Aξ+Bυ is GAS or ISS iff A is Hurwitz4 and the functions β and γ in (2.1) and
(2.2) can be computed as:

β(r, s) = ‖eAs‖r, γ(r) = ‖B‖
(∫ ∞

0

‖eAs‖ds
)
r.

One can characterize the aforementioned ISS property with respect to some
Lyapunov function, as defined next.

Definition 4. A function V : Rn → R+
0 which is continuous on Rn and smooth

on Rn\{0n} is said to be an ISS Lyapunov function for the closed-loop system

ξ̇ = f(ξ,K(ξ + ε)), (2.3)

where K : Rn → Rm, if there exist K∞ functions α, α, γ, and some constant
κ ∈ R+ such that for all x, e ∈ Rn the following inequalities are satisfied:

α(‖x‖) ≤ V (x) ≤ α(‖x‖),
∂V (x)

∂x
f(x,K(x+ e)) ≤ −κV (x) + γ(‖e‖). (2.4)

4 A square matrix A is called Hurwitz if the real parts of its eigenvalues are negative.

The following theorem, borrowed from [20], characterizes the ISS property
for the closed-loop system (2.3) in terms of the existence of an ISS Lyapunov
function.

Theorem 1. The closed-loop system (2.3) is ISS with respect to measurement
errors ε if and only if there exists an ISS Lyapunov function for (2.3).

The specific ISS characterization for linear case is reported in the Appendix.

3 Problem Formulation

Consider a control system Σ and assume that there exist p different controllers
Ki : Rn → Rm, i ∈ S := {1, . . . , p}, rendering the closed-loop system

ξ̇ = f(ξ,Ki(ξ + ε)) (3.1)

ISS with respect to measurement errors ε : R+
0 → Rn, with associated ISS Lya-

punov functions Vi and corresponding K∞ functions αi, αi, γi and positive con-
stants κi ∈ R+ as in Definition 2.4. Now consider a variable-rate control system
Σ̂ = (Σ,P,S,S) representing a sample-and-hold implementation of the closed
loop of Σ with different controllers Ki with the associated sampling times hi, as
depicted schematically in Figure 1 in the Appendix, where P = {K1, . . . ,Kp},
S = {1, . . . , p}, and

– S denotes a subset of the set of all piecewise constant cádlág (i.e. right-
continuous and with left limits) functions from R+

0 to S with a finite number
of discontinuities on every bounded interval in R+

0 (no Zeno behaviour).
Each π ∈ S represents a schedule dictating which controller is active at any
time t ∈ R+

0 . Given any π ∈ S, denoting the switching times as t0, t1, t2, . . .
(occurring at the discontinuity points of π), we denote by pi ∈ S the value
of the switching signal on the interval [ti, ti+1[. We assume also that the set
S contains only elements for which there exists constants τpipi+1 ∈ Q+

0 such
that τpipi+1

≤ ti+1− ti, for any i ∈ N0, and τpipi+1
≥ hpi for any pi, pi+1 ∈ S.

A continuous-time curve ξ :]a, b[→ Rn is said to be a trajectory of Σ̂ if there
exists a switching signal π ∈ S satisfying:

ξ̇(t) = f(ξ(t), υ(t)) (3.2)

υ(t) = Kπ(t)(ξ(`hπ(t))), t ∈ [`hπ(t), (`+ 1)hπ(t)[, ∀` ∈ N0.

We now introduce the main problem which we plan to solve in this paper.

Problem 1. Consider a set T of real-time tasks characterized by arrival curves
(αlj , α

u
j), j = 1, . . . , T , and a control task defined as in (3.2) . Determine the

schedule π ∈ S of controllers and associated sampling times (Ki, hi) for the
control task to maximize the utilization of the residue bandwidth left by the
real-time tasks while simultaneously guaranteeing the stability of the control
task.

We want to maximally utilize the available bandwidth on the average thus
increasing the robustness of the controller implementation to external distur-
bances.

4 Adaptive Scheduling of Variable-rate Control Tasks

In order to compute a stability aware schedule for the incoming control task
on an existing platform, we first need: (i) to construct an abstraction of the
scheduling constraints that need to be respected to guarantee stability of the
control task; (ii) to estimate the available processing bandwidth left by the real-
time tasks already present in the platform. We address these challenges in the
following.

4.1 Control Task Scheduling Constraints

Consider a control task defined as in (3.2) satisfying the following assumption.

Assumption 2 Each of the pairs (Ki, hi), i = 1, . . . , p, of controller and as-
sociated sampling times are such that each sampled-data control system (3.2)
satisfies

∂Vi(ξ(t))

∂x
f(ξ(t), υ(t)) ≤ −κ̂iVi(ξ(t)), (4.1)

υ(t) =Ki(ξ(`hi)), t ∈ [`hi, (`+ 1)hi[, ∀` ∈ N0,

for some κ̂i ∈ R+, guaranteeing that each mode of the closed-loop system is GAS.

Remark 1. There is an abundant literature allowing to design together such
pairs of controllers and sampling times satisfying Assumption 4.1, see e.g. [15]
and references therein. Alternatively, one can consider that a continuous time
controller is available and compute an adequate sampling time under very mild
assumptions on the plant and controller (namely, continuity of the dynamics of
plant and controller) such that Assumption 4.1 holds, see e.g. [14]. Additionally,
the large bulk of literature on event-triggered control provides an alternative
way of computing sampling times hi satisfying our requirements through the
closely related methods to compute minimum inter-sample times, see e.g. [21].
Note also that the results hereby presented can be directly extended to the case
of locally asymptotically stable systems, if one instead assumes (4.1) only holds
on a compact set.

We define a timed automaton (cf. Appendix for a definition) Tad =
(L,L0, C,E, Inv), where L = S, L0 = L, C = {ζ}, and

– the set E of edges is given by the collection of all tuples (i, g, r, j) such that
i, j ∈ S, g = {ζ | ζ ≥ τij} is the transition guard, and the clock reset set r is
given by {ζ};

– the (location) invariant for mode i is given by Inv(i) := {ζ | ζ ≥ 0}, ∀i ∈ S,

describing the set of admissible switching policies between different controllers
Ki, i.e. Sad ⊆ S, guaranteeing GAS of the variable-rate closed-loop system,
schematically illustrated in Figure 1 in the Appendix. An example of such au-
tomaton for the case of S = {1, 2, 3} is depicted in Figure 2.

Mode 1

ζ̇ = 1
ζ ≥ 0

ζ := 0

Mode 2

ζ̇ = 1
ζ ≥ 0

ζ := 0

Mode 3

ζ̇ = 1
ζ ≥ 0

ζ := 0

ζ ≥ τ12

ζ := 0

ζ ≥ τ21

ζ := 0

ζ ≥ τ13

ζ := 0

ζ ≥ τ31

ζ := 0

ζ ≥ τ23

ζ := 0

ζ ≥ τ32

ζ := 0

Fig. 1. Timed automaton Tad for 3 con-
trollers.

In the following, we establish
which properties τij , i ∈ {1, . . . , p}
and j ∈ {1, . . . , p}\{i}, need to sat-
isfy so that indeed Tad characterizes
a set Sad ⊆ S of stabilizing switching
sequences.

Assumption 3 For any pair of i, j ∈
{1, . . . , p}, there exits a constant
µij ≥ 1 such that

∀x ∈ Rn, Vi(x) ≤ µijVj(x). (4.2)

Note that Assumption 4.3 is al-
ways satisfied for the type of ISS Lyapunov functions introduced in Theorem
2.6 whose existences are guaranteed for stabilized linear control systems.

Theorem 4. Consider the variable-rate control system Σ̂ in (3.2) and let As-
sumptions 4.1 and 4.3 hold. If log

µij

ρ < κ̂jτji, for any i, j ∈ {1, . . . , p}, i 6= j,

and some ρ ∈]0, 1[, then Σ is GAS and Tad using these τij characterizes a set
Sad of stabilizing switching sequences.

The proof of Theorem 4.4 is provided in the Appendix.

4.2 Task Set Characterization

We consider an ECU platform for which the arrival pattern of each task in an
existing task set T is known. For a task θi ∈ T , the RTC arrival curves (αli, α

u
i)

are functions from R+ to N [7,22] such that the number of instances of θi arriving
in any time window of size t is lower bounded by αli(n) and upper bounded by
αui (n). Let us consider the deadline of each instance of θi to be ei time units.
The maximum number of task instances of type θi that may arrive in a period
of size ei is given by ai where ai := αui (ei). A computational bandwidth which
allows sufficient scheduling slots for executing ai instances of θi in every interval
of length ei is sufficient for scheduling θi since ei represents the deadline of each
instance of θi.

Consider now the worst case execution time (WCET) of θi to be wi CPU
cycles. Thus, aiwi number of CPU cycles need to be made available for task θi in
every consecutive real-time interval of size ei. Let the total available bandwidth
offered by the CPU be given as H computation cycles per time unit. Assume that
the existing scheduling policy for the platform allocates a yi ∈ [0, 1] fraction of

the total bandwidth to θi. We consider an as late as possible (ALAP) scheduling
of the tasks in the period ei, meaning that the fraction of bandwidth y allocated
to task θi is provided in intervals of time of length δi := aiwi

Hyi
whose end coincides

with multiples of ei. We provide a formal definition of these ALAP utilization
patterns in the following.

Definition 5. The ALAP bandwidth utilization pattern of a task θi, with pe-
riod ei, bandwidth utilization fraction yi, and utilization time δi, is a function

σ
(ei,yi,δi)
θi

: R+
0 → [0, 1] satisfying the following properties:

– σ
(ei,yi,δi)
θi

(t+ ei) = σ
(ei,yi,δi)
θi

(t);

– σ
(ei,yi,δi)
θi

(t) = 0, t ∈ [0, ei − δi[;
– σ

(ei,yi,δi)
θi

(t) = yi, t ∈ [ei − δi, ei[.

0 10 20 30 40 50 60

0

5

10

15

20

25

Task 1

Task 2

Fig. 2. Arrival curves αu
1 , α

u
2 .

Given the task set T =
{θ1, . . . , θn} with correspond-
ing deadlines {e1, . . . , en} and
fraction of bandwidth allocated
{y1, . . . , yn}, one can compute
their respective δi’s as indicated
earlier. Adding up the band-
width utilization scenarios of
each of those tasks a total band-
width utilization pattern can be

obtained σT =
∑n
i=1 σ

(ei,yi,δi)
θi

. Note that this bandwidth utilization pattern is

also a periodic function σT : R+
0 → [0, 1] with period ē = l.c.m.(e1, . . . , en),

where l.c.m. stands for least common multiple, but this is not necessarily an
ALAP bandwidth utilization pattern (the last two conditions of the definition
may not hold for σT). It may be noted that budgeting processor bandwidths in
the way as discussed above is useful for satisfying the bandwidth requirement
for any scheduling policy which do not allow deadline violation.

Example 1. Let us consider two tasks θ1, θ2 with upper arrival curves as shown
in Figure 3. We have e1 = 30 and e2 = 20 time units. From the arrival curves
we get a1 = αu1 (30) = 2 and a2 = αu1 (20) = 10. Thus, we have a maximum of 2
instances of θ1 and 10 instances of θ2 arriving inside a period of 30 and 20 time
units, respectively. We reserve enough computational slots inside such periods
for executing ai instances of θi inside an interval of size ei, i = 1, 2.

Let the WCET of θ1, θ2 be 30000 and 2000 CPU cycles, respectively. The
CPU offers 10000 computation cycles (H) per time unit and the scheduler of-
fers 40% and 20% of overall CPU bandwidth to θ1 and θ2, respectively, during
execution (i.e. y1 = 0.4, y2 = 0.2). This means θ1 and θ2 gets 4000 and 2000
computation cycles per time unit, respectively, while executing. This results in
the execution of every instance of θ1 consuming 30000/4000 = 7.5 time units.
Thus, to satisfy the total worst case demand of θ1, i.e. 2 instances in periodic in-
tervals of size 30 time units, we require 15 time units of CPU given a bandwidth

of 40%. Similarly, we require 10 time units in periodic intervals of size 20 given
a bandwidth of 20% for θ2. Adding up these requirements point-wise, a worst
case bandwidth requirement pattern, which recurs every l.c.m.(30, 20) = 60 time
units, is computed. The resulting bandwidth pattern is illustrated in Figure 4.

4.3 Scheduler Design

0

50

0 20 40 60 80 100 120 140

Task 2

0

50

0 20 40 60 80 100 120 140

Task 1

0

50

100

0 20 40 60 80 100 120 140

Overall Bandwidth Utilisation

P
e

r
e

n
t

g
e

B
a

n
d

w
id

th
 U

t
lis

a
t
o

n

T me Unit

Fig. 3. ALAP Bandwidth budgets

As discussed earlier, given a
control system with p different
controllers (from a set P =
{K1, . . . ,Kp}) having sampling
rates {f1 < f2 < · · · < fp},
(fi = h−1

i), we can construct
a TA T having p number of
modes, where each mode 1 ≤
i ≤ p signifies the use of con-
troller Ki. For every possible
mode switch from some mode i
to some mode j, the automaton provides a timing constraint τij signifying what
is the minimum duration of using mode i (using Ki) so that a switching can
be performed to mode j (start using Kj) guaranteeing that the overall closed
loop system is GAS. Let the WCET of controller Ki be ωci (in CPU cycles),
and thus its computational requirement is ωci fi cycles per time unit. Given H
available computing cycles per time unit, the fraction of bandwidth required by

a controller is ri =
ωc

i fi
H , and so one can compute the bandwidth requirements

{r1, . . . , rp} of all controllers in P .
Given the total bandwidth utilization pattern σT for the task set T , with

period ē, denote by σT := 1−σT the residual bandwidth pattern. Let us consider
such a pattern σT and describe it by a string sT := ((l1, v1), . . . , (lν , vν))ω, with∑ν
i=1 vi = ē, denoting the infinitely repeating concatenation of time intervals of

length vi and associated fraction of bandwidth available li, with i = 1, . . . , ν.
We refer to the i-th tuple in the sequence as the i-th stage of the pattern and to
the period ē as the recurrence length of the pattern. We also denote by sT [ē] :=
((l1, v1), . . . , (lν , vν)). We use the sequence description sT and the availability
pattern σT interchangeably in what follows.

Consider now the available bandwidth string sT , and define S := 〈S1, . . . , Sν〉
with Si ⊆ 2P , ∀i ∈ {1, . . . , ν}, such that Si = {Kj | rj ≤ li}. The list Si contains
the controllers which are schedulable at each of the i-th stages of sT in terms of
the available bandwidth (but possibly leading to an unstable closed-loop opera-
tion).

Example 2. Given the instance of σT as shown in Figure 5, a possible list
S for the case of 4 controllers, could take the form S1 = {K1,K2}, S2 =
{K1,K2,K3}, S3 = {K1}, S4 = {K1,K2}, S5 = {K1,K2,K3,K4}, where we
have assumed that ri < rj if i < j.

K1

K2

K3

K2

K1

K1

K2

K1

K4

K3

K2

K1

Time −→

R
es

id
u
a
l

B
an

d
w

id
th

(σ
T

)
−→

v1 v2 v3 v4 v5

Fig. 4. Admissible Controllers

We specify a switching se-
quence ς as a string ς =
((Ki1 , ti1), . . . , (Kik , tik), . . . , (Kin , tin))
indicating that controller Kik is
used inside the k-th time interval[∑k−1

j=1 tij ,
∑k
j=1 tij

]
, of duration tik .

We consider only nontrivial sequences
in the sense that Kij 6= Kij+1 for all
j in a sequence. The length of such a
sequence is given by |ς| = ∑n

j=1 tij . One
can therefore construct from such a sequence ς a switching signal π ∈ S (c.f.

Section 3) by letting π(t) = ik if t ∈
[∑k−1

j=1 tij + ēs,
∑k
j=1 tij + ēs

]
for some

s ∈ N.
Note that the timed automaton Tad derived in section 4.1, provides us with a

set of timing constraints {τij | 1 ≤ i ≤ p∧1 ≤ j ≤ p, i 6= j} where a constraint τij
signifies the minimum amount of time controller Ki should execute (i.e. stay in
mode i of the automaton) before a switch to controller Kj is allowed. Given σT ,
the list S, and Tad, an admissible switching sequence can be defined as follows.

Definition 6. Given a bandwidth pattern σT described by the string sT :=
((l1, v1), . . . , (lν , vν))ω with recurrence length ē, the list S of admissible con-
trollers, the timed automaton Tad, a switching sequence ς = ((Ki1 , ti1), . . . ,
(Kik , tik), . . . , (Kin , tin)) is considered admissible if:

– |ς| = l × ē, for some l ∈ N;
– For any 1 ≤ k ≤ n, if ∃m, 0 ≤ m < l, and ∃p, 1 ≤ p ≤ ν, such that

the intervals
[∑k−1

j=1 tij ,
∑k
j=1 tij

]
and

[
m× ē+

∑p−1
j=1 vj ,m× ē+

∑p
j=1 vj

]
intersect, i.e., for every k-th time interval in ς if there is a non-null inter-
section with an interval vp of σT , then Kik ∈ Sp and tik ≥ τikik+1

.

We define the notion of bandwidth rejection by an admissible switching sequence
as follows.

Definition 7. Given a bandwidth pattern σT with recurrence length ē and the
list S of admissible controllers, the bandwidth rejection by an admissible switch-
ing sequence ς = ((Ki1 , ti1), . . . , (Kik , tik), . . . , (Kin , tin)) is given by

rej(ς) =

∫ l×ē

0

(σT (t)− r(t))dt,

where |ς| = l × ē, for some l ∈ N, and r : R+
0 → [0, 1] is defined as

r(t) = rik for t ∈

k−1∑
j=1

tij ,

k∑
j=1

tij

 .
In order to formally capture the set of admissible switching sequences, we

construct a Linearly Priced Timed Automaton (LPTA) (cf. Appendix for a def-
inition). Given the list S, σT , and the timing constraints for stable switching

as captured by the timed automaton Tad derived in section 4.1, the LPTA
T = (L,L0, C,E, Inv,P) is defined as follows.

– L = {mi,j | ∃(i, j) ∈ {1, . . . , ν} × {1, . . . , p} s.t. Kj ∈ Si}. A location mi,j

denotes a possible choice of controller Kj inside the time interval vi.
– L0 = {m1,k ∈ L |Kk ∈ S1}.
– C = {c, x, cg}. Clock c is used to keep track of the total time elapsed using

the same controller mode across a sequence of intervals. Clock x tracks the
time spent on all locations inside the same stage while cg serves as a global
clock.

– E contains three types of edges:
1. inter-stage edges: for mi,j ,mi+1,k ∈ L, (mi,j , φ, C

′,mi+1,k) ∈ E if
(Kj ∈ Si) ∧ (Kk ∈ Si+1).

2. intra-stage edges: for mi,j ,mi,k ∈ L, (mi,j , φ, C
′,mi,k) ∈ E if (Kj ∈

Si) ∧ (Kk ∈ Si).
3. final stage edges: for mν,j ,m1,j ∈ L, (mν,i, φ, C

′,m1,j) ∈ E if Ki ∈ Sν ,
where vν is the last interval defining σT .

– An inter-stage edge (mi,j , φ, C
′,mi+1,k) ∈ E has a clock reset set C ′ = {c, x}

if j 6= k and C ′ = {x} otherwise.
– An inter-stage edge (mi,j , φ, C

′,mi+1,k) ∈ E has a guard φ = (c ≥ τjk)∧(x ≥
vi) if j 6= k and φ = (x ≥ vi) otherwise.

– An intra-stage edge (mi,j , φ, C
′,mi,k) ∈ E shall always have j 6= k by con-

struction. For such a transition, φ = (c ≥ τjk) and C ′ = {c}.
– A final-stage edge (mν,i, φ, C

′,m1,j) ∈ E has a clock reset set C ′ = {c, x} if
i 6= j and C ′ = {x} otherwise.

– A final-stage edge (mν,i, φ, C
′,m1,j) ∈ E has a guard φ = (c ≥ τij)∧(x ≥ vi)

if i 6= j and φ = (x ≥ vi) otherwise.
– Inv(mi,j) = {x ≤ vi}, ∀mi,j ∈ L. These invariants force the automaton

to leave mi,j after spending vi time in the mode. This takes care of the
bandwidth availability requirement.

– For a location (mode) mi,j , the cost rate function P is defined as, P(mi,j) =
(li − rj), ∀mi,j ∈ L \ {f}, and P(e) = 0 ∀e ∈ E. The cost rate at mi,j is
the difference between the bandwidth offered inside the interval vi, and the
bandwidth required by controller Kj , i.e. rj . We do not assign any costs to
the edge transitions.

Considering the number of stages in the residual bandwidth pattern as ν
and the maximum of controller options in each stage as p (= total number of
controllers available for the control loop), in the worst case the number of states
in the LPTA is O(νp), the number of inter-stage and intra-stage of edges are
both O(p2). Hence, the time complexity for LPTA synthesis is O(νp+ p2).

Remark 2. By construction, any run of T with length being an integer multiple
of ē is an admissible switching sequence.

Example 3. We exemplify the construction of T in Figure 6 in the Appenix for
the available recurrent bandwidth pattern σT along with admissible controllers

as shown in Figure 5. The LPTA shown in Figure 6 is labeled with all the inter-
stage and final-stage edges. For visual clarity we show the intra-stage edges for
the interval v1 only. We have also left out the cost rate labels of the modes.

Based on the notion of on-the-average non-utilized bandwidth, we define a
switching sequence as optimal as follows.

Definition 8. An admissible switching sequence ς∗ is considered optimal if for

every other admissible switching sequence ς, we have rej(ς∗)
|ς∗| ≤

rej(ς)
|ς| .

It may be noted that in general an admissible switching sequence can be of length
which is any integer multiple of ē. Hence, it makes sense to consider optimality
among admissible switching sequences upto a maximum length.

Definition 9. An admissible switching sequence ς∗ = (K∗i1 , t
∗
1)(K∗i2 , t

∗
2) · · ·

(K∗ik , t
∗
k) with i1, . . . , ik ∈ {1, . . . , p} is considered optimal in N -unfolding of σT

if |ς∗| ≤ N×ē and among all admissible switching sequences with length ≤ N×ē,
ς∗ incurs the least (average) bandwidth rejection, i.e. for any other admissible

switching sequence ς with |ς| < N × ē, we have rej(ς∗)
|ς∗| ≤

rej(ς)
|ς| .

Computing Recurrent Schedules As a scheduling solution, we are interested
in switching sequences which follow a recurring pattern just like the bandwidth
pattern that recurs every ē time units.

Definition 10. Given a bandwidth pattern σT and the TA Tad, an admissible
switching sequence ς∗ = (K∗i1 , t

∗
1)(K∗i2 , t

∗
2) · · · (K∗ik , t∗k) with i1, . . . , ik ∈ {1, . . . , p}

is considered recurrent and optimal in N unfolding of σT if ς∗ is optimal in N
unfolding of σT and t∗k ≥ τiki1 .

The second condition captures the requirement to be satisfied by a finite
length pattern to be able to recur, according to the constraints imposed by Tad.
We denote such a sequence by ς∗N .

Observe that the period ē of the repeating bandwidth pattern can be very
large by itself for a potentially large task set (it is the l.c.m of all task deadlines).
In this work, we restrict our search for recurrent optimal switching sequences to
some preset N levels of unfolding of the bandwidth pattern. Let us denote the
switching sequence corresponding to the run of T which leads to minimum cost
reachability of a state (location/vertex = l, clock valuation = v) by ς∗(T , (l,v)).
Similarly, for some initial vertex l ∈ L0, let ς∗r (T , (l,V)) denote the recurring
switching sequence corresponding to the run which starts at l (with all clock
valuations being ‘0’) and reaches l with some valuation v ∈ V at minimal cost.
In our case, minimal cost implies minimal rejection of available bandwidth. Such
minimal cost runs, if exists, can be found by restricting the set of initial vertices
of T to {l} and applying minimum cost reachability analysis [17,4] for the vertex
l with the valuation set as per the specification of V.

Remark 3. For the LPTA T constructed from a bandwidth pattern σT of length
ē and TA Tad using methods outlined earlier, if ς∗N is the admissible switching
sequence recurrent and optimal in N unfolding of σT , then

rej(ς∗N)

|ς∗N |
= min

{
rej(ς)

|ς| | ς = ς∗r (T , (l, {cg = i× ē})), l ∈ L0, 1 ≤ i ≤ N
}
.

The quantity is non-trivial if there exists at least one switching sequence which
recurs with period ∈ {i × ē | 1 ≤ i ≤ N}. For computing ς∗N , the set {ς =
ς∗r (T , (l, {cg = i× ē)) | l ∈ L0, 1 ≤ i ≤ N} is enumerated. This essentially means
running N × |L0| number of minimum cost reachability analysis over the LPTA
where the time taken for each analysis is not uniform and increases with cg.

Remark 4 (State space reduction).
We have already noted that the period ē of σT can be very large for a large
task set. In that case it makes sense to merge consecutive stages in σT based
on some tolerance value. Thus, for a given σT = ((l1, v1), . . . , (lν , vν))ω, and a
bandwidth tolerance ε, if we have successive stages (li, vi), (li+1, vi+1) in σT such
that if |li − li+1| ≤ ε then we simply merge them to create a single stage (l, v)
with l = min(li, li+1) and v = vi + vi+1 along with the corresponding set of
admissible controllers given by S′ = Si ∩ Si+1 for the list S. This optimization
helps in significant reduction in the size of the LPTA.

Remark 5 (Multiple control loops).
The method discussed for scheduling a single control loop can be extended to
admit a set of control loops on the existing ECU platform. In that case we derive
the TA Tad for each control loop (having multiple controller options) using the
theory as discussed in section 4. We compute the product of such a set of TAs
and subsequently apply our method for computing switching sequences.

For a large-scale control system with r control loops, each having p controller
options, we may land up with pr controller options for each stage of the LPTA
in the worst-case. In general, the bandwidth restriction of each stage eliminates
the inadmissible options. The complexity of minimum cost reachability analysis
of LPTA is exponential in the number of clocks [4] (which is 3r for modeling
r control loops). For an LPTA with |L0| initial states being checked with N
unfolding, the analysis is performed |L0| ×N times.

5 Simulation Results

We revisit the task set T = {θ1, θ2} of our running example. The dif-
ferent parameters for the example are listed in Table ??. Considering
the overall available bandwidth (H) to be 10000 cycles per time unit,
the residual bandwidth pattern is computed as σT1 = ((l1, v1), · · ·)ω =
((1, 10), (0.8, 5), (0.4, 5), (0.6, 10), (0.8, 10), (1, 5), (0.6, 5), (0.4, 10))ω with
one time unit being 0.1 seconds. Similarly, we can compute for

another arbitrary task set, a residual bandwidth pattern, σT2 =
((1, 5), (0.8, 5), (0.5, 10), (0.4, 5), (0.6, 5), (0.8, 10), (1, 5), (0.6, 5), (0.4, 10), (0.45, 5),
(0.6, 25), (0.4, 5), (1, 5))ω.

Task(θi) θ1 θ2

Deadline(ei) e1 = 30 e2 = 20
ai = αu(ei) 2 10

WCET (CPU cycles) 30000 2000
% Bandwidth Allocated 40% 20%

Table 1. A sample set of tasks

We are interested in using the
existing ECU to schedule a control
loop for which multiple controller
options with different possible sam-
pling rates are available. We have
applied the proposed approach to
a number of linear control systems
and the results are reported in this
section as well as in the Appendix. The dynamic of each system Σ is given by
ξ̇ = Aξ +Bυ, for some matrices A and B of appropriate dimensions.

For each system, we construct p stabilizing controllers {K1, . . . ,Kp} using
classical results in linear control theory. For any i ∈ {1, . . . , p}, we find Lya-
punov functions Vi(x) := xTMix, for any x ∈ Rn and some positive definite
matrix Mi ∈ Rn×n, for the closed loop of Σ equipped with the controller Ki

satisfying the LMI in (??) with κ = i. Furthermore, the computed Lyapunov
functions Vi satisfy the inequality (4.1) with κ̂i = i/2 and the associated sam-
pling periods {h1, . . . , hp}. The controller update rates are then obtained as
fi = (1/hi). Using Theorem 4.4, we can compute τij by choosing ρ = 0.5.

t [s]
0 1 2 3 4 5

ξ(
t),

 π
*

-4

-2

0

2

4

6
ξ1
ξ2
ξ3
ξ4
π

*

Fig. 5. Closed-loop system trajectory for
Batch Reactor Process.

We consider the WCET of con-
troller Ki to be ωci (in CPU cycles)
and so one can compute the band-
width requirements for the con-
trollers, i.e. {r1, . . . , rp}, as ri =
ωc

i fi
H . Given the σT for the cur-

rent platform load, we can then
compute the list S of admissi-
ble controllers. Using our modeling
method from section 4.3, we create the LPTA specification for this scenario in
UPPAAL CORA [13] to obtain the minimum cost schedule. For each example we
have run the simulations for 5 unfolding to find an optimal admissible switching
sequence.

For example, Figure ?? shows a simulation of a closed loop batch reactor
process with p = 3 and step disturbances (of 0.1s width) at seconds 0, 2, and
4. It illustrates how the schedule obtained for σT1 from Table ?? indeed retains
the stability of the closed-loop under the considered disturbances.

5.1 Batch Reactor Process

The matrices A and B are given in [10] as,

A =


1.50 0 70 -5
-0.50 -4 0 0.50

1 4 -6 6
0 4 1 -2

 , B =


0 0
5 0
1 -3
1 0

 .
We consider a maximum of p = 14 controllers. Due to
lack of space, we do not provide matrices Ki and Mi. For
i ∈ {1, . . . , p}, the sampling periods are hi = 10−3 ×
{2.09, 2.33, 2.60, 2.71, 2.91, 3.25, 3.61, 4.17, 4.56, 4.95, 5.38, 5.49, 5.80, 6.04}.
The values of τij are not mentioned in order to save space.
Consider the controllers WCETs ωci = {23}. The band-
width requirements for the controllers are computed as ri =
{0.96, 0.86, 0.77, 0.74, 0.69, 0.62, 0.59, 0.51, 0.49, 0.45, 0.41, 0.41, 0.40, 0.39}.
The simulation results are summarized in Table ??.

p Controllers Switching Sequence Cost

For σT1

3 K4,K12,K14 [(K12, 15), (K14, 7), (K12, 28), (K14, 10)]ω 14.74

6
K4,
K10, . . . ,K14

[(K12, 15), (K11, 5), (K12, 30), (K11, 10)]ω 12.75

9
K4,
K7, . . . ,K14

[(K12, 15), (K8, 7), (K12, 28), (K8, 10)]ω 6.83

12 K3, . . . ,K14 [(K4, 15), (K5, 7), (K11, 8), (K4, 15), (K11, 5), (K5, 10)]ω 1.43

14 K1, . . . ,K14
[(K4, 10), (K14, 5), (K2, 7), (K9, 8), (K14, 10), (K4, 5), (K9, 5),
(K2, 10)]ω

1.58

For σT2

3 K4,K12,K14
[(K12, 20), (K14, 7), (K12, 23), (K14, 10), (K12, 30), (K14, 7),
(K12, 3)]ω

16.98

9
K4,
K7, . . . ,K14

[(K12, 10), (K13, 8), (K8, 7), (K12, 25), (K8, 10), (K11, 5),
(K12, 25), (K8, 7), (K12, 3)]ω

8.31

12 K3, . . . ,K14
[(K4, 10), (K9, 8), (K5, 7), (K11, 5), (K4, 15), (K11, 5),
(K5, 10), (K8, 5), (K11, 22), (K5, 8), (K14, 2), (K4, 3)]ω

3.26

13 K2, . . . ,K14
[(K4, 5), (K12, 5), (K8, 8), (K3, 7), (K10, 5), (K12, 10), (K4, 5),
(K10, 5), (K3, 10), (K7, 5), (K10, 22), (K3, 8), (K13, 2), (K4, 3)]ω

4.09

14 K1, . . . ,K14
[(K4, 5), (K14, 5), (K7, 8), (K2, 7), (K9, 5), (K14, 10), (K4, 5),
(K9, 5), (K2, 10), (K6, 5), (K9, 20), (K2, 10), (K4, 5)]ω

2.63

Table 2. Results for batch reactor process with N = 1.

References

1. R. Alur and D. L. Dill. Automata, Languages and Programming, volume 443 of
LNCS, chapter Automata for modeling real-time systems, pages 322–335. Springer,
Berlin, April 1990.

2. D. Angeli and E. D. Sontag. Forward completeness, unboundedness observability,
and their lyapunov characterizations. Systems and Control Letters, 38:209–217,
1999.

3. A. Anta and P. Tabuada. To sample or not to sample: self-triggered control for
nonlinear systems. IEEE Transaction on Automatic Control, 55(9):2030–2042,
2010.

4. G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and
F. W. Vaandrager. Minimum-cost reachability for priced timed automata. In
M. Di Benedetto and A. Sangiovanni-Vincentelli, editors, Hybrid Systems: Com-
putation and Control, volume 2034 of Lecture Notes in Computer Science, pages
147–161. Springer Berlin Heidelberg, April 2001.

5. J. L. Boudec and P. Thiran. Network Calculus: A Theory of Deterministic Queu-
ing Systems for the Internet, volume 2050 of Lecture Notes in Computer Science.
Springer, 2001.

6. M. S. Branicky. Multiple lyapunov functions and other analysis tools for switched
and hybrid systems. IEEE Transactions on Automatic Control, 43(4):475–482,
1998.

7. S. Chakraborty, S. Künzli, and L. Thiele. A general framework for analysing system
properties in platform-based embedded system designs. In DATE, volume 3, page
10190, 2003.

8. A. D’Innocenzo, G. Weiss, R. Alur, A. J. Isaksson, K. H. Johansson, and G. J.
Pappas. Scalable scheduling algorithms for wireless networked control systems. In
IEEE International Conference on Automation Science and Engineering, CASE,
pages 409–414. IEEE, 2009.

9. D. Goswami, A. Masrur, R. Schneider, C. J. Xue, and S. Chakraborty. Multi-
rate controller design for resource-and schedule-constrained automotive ecus. In
Proceedings of the Conference on Design, Automation and Test in Europe, pages
1123–1126. EDA Consortium, 2013.

10. M. Green and D. J. N. Limebeer. Linear robust control. Prentice Hall, August
1994.

11. J. P. Hespanha et al. Stability of switched systems with average dwell-time. In
Proceedings of the 38th IEEE Conference on Decision and Control, volume 3, pages
2655–2660. IEEE, 1999.

12. H. K. Khalil. Nonlinear systems. Prentice-Hall, Inc., New Jersey, 2nd edition,
1996.

13. K. G. Larsen. Priced timed automata: Theory and tools. In IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS, pages 417–425, 2009.

14. D. Nešic, A. Teel, and D. Carnevale. Explicit computation of the sampling period
in emulation of controllers for nonlinear sampled-data systems. IEEE Transactions
on Automatic Control, 54(3):619–624, 2009.

15. D. Nešić, A. R. Teel, and P. Kokotović. Sufficient conditions for stabilization
of sampled-data nonlinear systems via discrete-time approximations. Systems &
Control Letters, 38(4):259–270, 1999.

16. R. Raha, A. Hazra, A. Mondal, S. Dey, P. P. Chakrabarti, and P. Dasgupta. Syn-
thesis of sampling modes for adaptive control. In IEEE International Conference
on Control System, Computing and Engineering (ICCSCE), pages 294–299. IEEE,
2014.

17. J. I. Rasmussen, K. G. Larsen, and K. Subramani. Resource-optimal scheduling
using priced timed automata. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 220–235. Springer, 2004.

18. A. Sharifi-Kolarijani, D. Adzkiya, and M. Mazo Jr. Symbolic abstractions for the
scheduling of event-triggered control systems. (to Appear) In Proceedings of 54st
IEEE Conference on Decision and Control, Osaka, Japan, December 2015.

19. E. D. Sontag. Mathematical control theory, volume 6. Springer-Verlag, New York,
2nd edition, 1998.

20. E. D. Sontag. Input to state stability: Basic concepts and results. In P. Nistri and
G. Stefani, editors, Nonlinear and Optimal Control Theory, volume 1932 of Lecture
Notes in Mathematics, pages 163–220. Springer Berlin Heidelberg, 2008.

21. P. Tabuada. Event-triggered real-time scheduling of stabilizing control tasks. IEEE
Transactions on Automatic Control, 52(9):1680–1685, September 2007.

22. L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling
hard real-time systems. IEEE International Symposium on Circuits and Systems.
Emerging Technologies for the 21st Century., 4:101–104, 2000.

23. G. Weiss and R. Alur. Automata based interfaces for control and scheduling. In
Hybrid Systems: Computation and Control, pages 601–613. Springer, 2007.

24. S. A. M. Wiesbaden. Autosar — the worldwide automotive standard for E/E
systems. ATZextra worldwide, 18(9):5–12, 2013.

6 Appendix

6.1 ISS stability for linear control systems

Note that in the linear case any stabilizing gain K renders the closed-loop system
(2.3) ISS with respect to measurement errors ε and one obtains the following
specific ISS Lyapunov function characterization.

Theorem 5. The closed-loop system ξ̇ = Aξ+BK(ξ+ ε) is ISS with respect to
measurement errors ε if and only if V (x) = xTPx is an ISS Lyapunov function
with P ∈ Rn×n being a positive definite matrix satisfying the following linear
matrix inequality (LMI)

(A+BK)TP + P (A+BK) � −κP, (6.1)

for some constant κ ∈ R+.

⌃ : ⇠̇ = f(⇠, �)
⇠(t)�(t)

h1

h2

hp

K1(⇠(`h1)), 9` 2 N0

t 2 [`h1, (` + 1)h1[

K2(⇠(kh2)), 9` 2 N0

t 2 [`h2, (` + 1)h2[

Kp(⇠(khp)), 9` 2 N0

t 2 [`hp, (` + 1)hp[

Fig. 6. Variable-rate control system Σ̂.

6.2 (Priced) timed automata

We use the notion of Timed Automaton, introduced in [1], to describe real-time
systems. A timed automaton (TA) is a directed graph equipped with real-valued
variables (called clocks) modeling the logical clocks. We use C to denote a set of
finitely many clocks. A clock constraint is defined by finitely many conjunctions
of conditions of the form x ∼ a or x− y ∼ a with x, y ∈ C, ∼∈ {≤, <,=, >,≥},
and a ∈ Q+

0 . We use B(C) to denote the set of all clock constraints.

Definition 11. A timed automaton T is a tuple T = (L,L0, C,E, Inv) where

– L is a finite set of modes (or vertices);

– L0 ⊆ L is a set of initial modes;
– C is a set of finitely many real-valued clocks;
– E ⊆ L× B(C)× 2C × L is the set of edges;
– Inv : L→ B(C).

The semantics of a TA are defined as a transition system [?] where a state
consists of the current location and the current value of the clocks. Two types of
transitions between states are possible: the automaton may delay for some time
(a delayed transition), or take an enabled edge (a discrete transition). Edges
are labeled with a guard (∈ B(C)), described as a clock constraint, and a reset
(∈ 2C). An edge transition can be taken when the value of the clocks satisfies
the guard associated with the edge. Once an edge transition is taken a subset
of all the clocks may be reset to zero. The model of timed automaton can be
extended with a notion of price assigned to both locations and edges. Such
extended automata are known as Linearly Priced Timed Automaton (LPTA) [4]
as defined below.

Definition 12. A linearly priced timed automaton T is a tuple T =
(L,L0, C,E, Inv,P) where all the symbols carry their usual meanings as in TA
and P : (L ∪ E)→ R+

0 is a function which assigns price to modes and edges.

The semantics of LPTA is the same as a normal TA apart from the calculation of
cost associated with each run possible in the underlying transition system. The
price of a mode gives the cost rate of staying in that mode and the price of an
edge transition gives the cost of executing that edge transition. Let us consider
a run α in an LPTA with i) the sequence of nodes traversed being l0, . . . , ln
each having prices p0, . . . , pn, ii) the sequence of edge transitions executed being
e1, . . . , en with prices q1, . . . , qn and iii) the amount of time spent in each node
being t0, . . . , tn. For such a run, we have cost(α) = Σn

i=0pi × ti +Σn
i=1qi.

6.3 Real time calculus

Real Time Calculus (RTC), while rooted in Network Calculus [5], introduces sev-
eral significant differences like modeling of remaining service. The RTC formal-
ism was developed to capture the upper and lower limits of events and resource
usage in order to model and analyze the performance of real-time embedded
systems [7,22]. In the RTC formalism, the arrivals of input events of a system
are specified using a (min,max) formalism. For example, the arrival pattern of
a real-time task can be characterized as (t, a, b) implying that inside every time
window of length t, the number of arrivals for such task instances is a minimum
of a and a maximum of b.

Arrival patterns for real-time tasks are represented by a set of arrival curves,
αl and αu, defined formally in Definition 2.9. The lower arrival curve αl(t) and
upper arrival curve αu(t) represents the minimum and maximum number of
events arriving within any time interval of length t. Similar to the arrival curves,
we define service curves, βl(t) and βu(t), defined formally in Definition 2.10, to
denote the resource capability of the processing unit over any time interval t.

Definition 13. For a task θi, let R[s, t[denote the total number of task instances
arriving inside the time interval [s, t[. The arrival curve pair (αl, αu) for the task
are functions from R+

0 to N such that αl(t−s) ≤ R[s, t[≤ αu(t−s) for any s < t,
where αu(0) = αl(0) = 0.

Definition 14. For a resource pi, let C[s, t[denote the total number of free
computation slots inside the time interval [s, t[. The service curve pair (βl, βu)
for the resource are functions from R+

0 to N such that βl(t−s) ≤ C[s, t[≤ βu(t−s)
for any s < t, where βu(0) = βl(0) = 0.

6.4 Proof of Theorem 4.4

Proof. We show the result for the case of infinite number of switches. A proof
for the case of finite switches can be written in a similar way. Let a ∈ Rn be any
initial condition, t0 = 0, and let pi ∈ {1, . . . , p} denote the value of the switching
signal on the interval [ti, ti+1[, for i ∈ N0. For all i ∈ N0 and t ∈ [ti, ti+1[and
using inequality (4.1), one gets

V̇pi (ξaυ(t)) ≤ −κ̂piVpi (ξaυ(t)) .

For all i ∈ N0, t ∈ [ti, ti+1], and by continuity of Vpi , we have

Vpi(ξaυ(t)) ≤ Vpi(ξaυ(ti))e
−κ̂pi

(t−ti). (6.2)

Particularly, for t = ti+1 ∀ i ∈ N0 and using Assumption 4.3, one gets

Vpi+1
(ξaυ(ti+1)) ≤ µpi+1pie

−κ̂pi
(ti+1−ti)Vpi(ξaυ(ti)).

Then, by induction, we have that for all i ∈ N0

Vpi(ξaυ(ti)) ≤ µpipi−1
e−κ̂pi−1

(ti−ti−1)× (6.3)

µpi−1pi−2
e−κ̂pi−2

(ti−1−ti−2) . . . µp1p0e
−κ̂p0 (t1−t0)Vp0(a).

Combining (4.3) and (4.4), for all i ∈ N0 and t ∈ [ti, ti+1], one obtains

Vpi(ξaυ(t)) ≤ e−κ̂pi
(t−ti)µpipi−1e

−κ̂pi−1
(ti−ti−1)×

µpi−1pi−2e
−κ̂pi−2

(ti−1−ti−2) . . . µp1p0e
−κ̂p0

(t1−t0)Vp0(a).

Since we consider only switching signals in S, i.e. such that ∃ τpipi+1
∈ Q+

0 :
τpipi+1

≤ ti+1 − ti for any i ∈ N0, one can further bound as:

Vpi(ξaυ(t)) ≤ e−κ̂pi
(t−ti)µpipi−1

e−κ̂pi−1
τpi−1pi×

µpi−1pi−2
e−κ̂pi−2

τpi−2pi−1 . . . µp1p0e
−κ̂p0

τp0p1Vp0(a)

≤ µpipi−1e
−κ̂pi−1

τpi−1pi×
µpi−1pi−2

e−κ̂pi−2
τpi−2pi−1 . . . µp1p0e

−κ̂p0τp0p1Vp0(a).

Finally, since log
µij

ρ < κ̂jτji, for any i, j ∈ {1, . . . , p}, i 6= j, and some ρ ∈]0, 1[,
we obtain:

Vpi(ξaυ(t)) ≤ ρiVp0(a). (6.4)

Using the first set of inequalities in Definition 2.4 and (4.5), one gets

αpi(‖ξaυ(t)‖) ≤ Vpi(ξaυ(t)) ≤ ρiVp0(a) ≤ ρiαp0(‖a‖),
which reduces to

‖ξaυ(t)‖ ≤ α−1
pi

(ρiαp0(‖a‖)), (6.5)

due to α ∈ K∞. As t goes to infinity and since the number of switches are
infinite (i.e. i → ∞), from (??) we conclude that ‖ξaυ(t)‖ converges to zero
which completes the proof.

m11

x ≤ v1
c, x := 0

m12

x ≤ v1
c, x := 0

m21

x ≤ v2

m22

x ≤ v2

m23

x ≤ v2

m31

x ≤ v3

m41

x ≤ v4

m42

x ≤ v4

m52

x ≤ v5

m53

x ≤ v5

m51

x ≤ v5

m54

x ≤ v5

To both m11 and m12

with suitable guard

c ≥ τ12
c := 0

x ≥ v1
x := 0

(c ≥ τ12) ∧ (x ≥ v1)
c, x := 0

(c ≥ τ13) ∧ (x ≥ v1)
c, x := 0

c ≥ τ21
c := 0

(c ≥ τ21) ∧ (x ≥ v1)
c, x := 0

x ≥ v1
x := 0

(c ≥ τ23) ∧ (x ≥ v1)
c, x := 0

x ≥ v2
x := 0

(c ≥ τ21)
∧(x ≥ v2)
c, x := 0

(c ≥ τ21)
∧(x ≥ v2)
c, x := 0

x ≥ v3
x := 0

(c ≥ τ12) ∧ (x ≥ v3)
c, x := 0

x ≥ v4
x := 0

(c ≥ τ12)
∧(x ≥ v4)
c, x := 0

(c ≥ τ13)
∧(x ≥ v4)
c, x := 0

(c ≥ τ14) ∧ (x ≥ v4)
c, x := 0

x ≥ v4
x := 0

(c ≥ τ21) ∧ (x ≥ v4)
c, x := 0

(c ≥ τ23)
∧(x ≥ v4)
c, x := 0

(c ≥ τ24) ∧ (x ≥ v4)
c, x := 0

Fig. 7. Linearly Priced Timed Automaton for Stable and Schedulable Switching Se-
quences

6.5 Aircraft pitch control

The matrices A and B are given in [?] as

A =

 -0.313 56.7 0
-0.014 -0.43 0

0 56.7 0

 , B =

 0232
0.0203

0

 .

We consider a maximum of p = 6 controllers. Due to lack of space, we do not
provide matrices Ki and Mi. For i ∈ {1, . . . , p}, the sampling periods are hi =
10−7 × {1.39, 3.13, 8.90, 43.0, 48.7, 109}. The values of τij are:

[τij] =


0 0.31 0.37 0.45 1.15 0.80

0.48 0 0.35 0.46 1.30 0.86
0.90 0.65 0 0.49 1.52 0.98
1.70 1.39 0.99 0 1.89 1.15
9.62 8.83 7.82 6.45 0 4.48
3.51 3.07 2.52 1.76 1.83 0

 .

Consider the controllers WCETs, ωci = 10−3 × {1, 2, 5, 23, 25, 40}.
The bandwidth requirements for the controllers are computed as
ri={0.73, 0.64, 0.57, 0.54, 0.52, 0.37}. Given the σT for the current plat-
form load, the list S of admissible controllers can be found. We then use our
modeling method from section 4.3 and create the LPTA specification for this
scenario in UPPAAL CORA [13]. The resulting minimum cost schedule is given
by the switching sequence in5 Table ?? for different values of unfolding N. The
corresponding cost value obtained from UPPAAL CORA is also included.

p Controllers NSwitching Sequence Cost

For σT1

2 K5,K6 1 [(K6, 60)]ω 13.80

3 K4,K5,K6 1 [(K4, 20), (K5, 30), (K4, 10)]ω 8.70

4 K3,K4,K5,K6

1 [(K3, 20), (K6, 10), (K5, 20), (K3, 10)]ω 8.10
2 [(K3, 20), (K6, 10), (K5, 20), [(K3, 30), (K5, 30)]∗, (K3, 10)]ω15.90

5 K3, . . . ,K6 2
[(K2, 20), (K4, 14), (K5, 6), (K6, 10), [(K2, 30), (K6, 10),
(K5, 10), (K6, 10)]∗, (K2, 10)]ω

20.90

For σT2

2 K5,K6 1 [(K6, 100)]ω 20.00

3 K4,K5,K6 1 [(K4, 25), (K5, 25), (K4, 18), (K5, 22), (K4, 10)]ω 12.01

4 K3, . . . ,K6 2
[(K3, 26), (K5, 24), (K3, 18), (K6, 10), (K5, 12), [(K3, 35),
(K5, 25), (K3, 18), (K6, 10), (K5, 12)]∗, (K3, 10)]ω

22.00

5 K2, . . . ,K6 2
[(K3, 26), (K5, 24), (K3, 18), (K6, 10), (K5, 12), [(K3, 35),
(K5, 25), (K3, 18), (K6, 10), (K5, 12)]∗, (K3, 10)]ω

26.95

6 K1, . . . ,K6 2
[(K1, 26), (K4, 9), (K5, 10), (K1, 20), (K3, 10), (K4, 15),
[(K1, 35), (K4, 9), (K5, 11), (K1, 20), (K3, 10), (K4, 15)]∗,
(K1, 10)]ω

25.44

Table 3. Aircraft pitch control simulation results

6.6 Ball and Beam

The matrices A and B are given in [?] as

A =


0 1 0 0
0 0 7 0
0 0 0 1
0 0 0 0

 , B =


0
0
0
1

 .
5 The operator [· · ·]∗ in the table is defined as follows: ∀ N, the switching sequence

for any further unfolding N + a, is obtained by repeating the sequence under [· · ·]∗,
a times.

We consider a maximum of p = 8 controllers. For i ∈ {1, . . . , p}, the sampling
periods are hi = 10−5 × {3.23, 5.18, 8.29, 13.1, 18.4, 19.7, 26.6, 28.2}. The values
of τij are:

[τij] =



0 0.4 0.4 0.5 0.5 0.5 0.4 0.4
1 0 0.4 0.5 0.5 0.5 0.5 0.5

1.9 1.1 0 0.5 0.7 0.6 0.6 0.6
3 2.3 1.4 0 0.8 0.6 0.7 0.7
26 23 21 18 0 14 11 7
4.5 3.7 2.9 1.8 1.1 0 0.8 0.9
7 6 5 4 1.3 2.4 0 1
12 11 9 8 2 6 4 0


.

Consider the controllers WCETs ωci = {0.3, 0.4, 0.5, 0.8, 0.8, 0.8, 0.9, 0.9}.
The bandwidth requirements for the controllers are computed as ri =
{0.93, 0.78, 0.62, 0.61, 0.44, 0.41, 0.34, 0.32}. The simulation results are summa-
rized in Table ??.

p Controllers NSwitching Sequence Cost
For σT1

2 K5,K8 1 [(K8, 60)]ω 16.80

3 K5,K7,K8 1 [(K8, 60)]ω 15.60

4 K5, . . . ,K8 2 [(K7, 24), (K8, 26), [(K7, 30), (K8, 30)]∗, (K7, 10)]ω 13.78

5 K4, . . . ,K8 1 [(K5, 15), (K6, 45)]ω 14.40

For σT2

2 K5,K8 1 [(K8, 100)]ω 19.50

3 K5,K7,K8 1 [(K8, 100)]ω 17.50

4 K5, . . . ,K8 2
[(K7, 25), (K8, 25), (K7, 24), (K8, 16), [(K7, 35), (K8, 25),
(K7, 24), (K8, 16)]∗, (K7, 10)]ω

29.26

5
K4, . . . ,K8

1 [(K5, 10), (K7, 8), (K6, 24), (K7, 8), (K6, 45), (K5, 5)]ω 18.18

2
[(K5, 10), (K7, 10), (K6, 40), (K7, 30), (K6, 40), (K5, 15),
(K6, 50), (K5, 5)]ω

35.80

3
[(K5, 10), (K7, 10), (K6, 40), (K7, 30), (K6, 40), (K5, 15),
[(K6, 24), (K7, 21), (K6, 40), (K5, 15)]∗, (K6, 50), (K5, 5)]ω

-

Table 4. Simulation results for ball and beam

6.7 Cruise Control

The matrices A and B are given in [?] as

A = [−0.05] , B = [0.001] .

We consider a maximum of p = 9 controllers. For i ∈ {1, . . . , p}, the sampling pe-
riods are hi = 10−2 × {7.48, 8.42, 9.64, 11.3, 13.6, 17, 22.9, 34.8, 72.7}. The values

of τij are:

[τij] =



0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0 0.2 0.2 0.2 0.2 0.2
0.3 0.3 0.3 0.3 0 0.3 0.3 0.3 0.3
0.3 0.3 0.3 0.3 0.3 0 0.3 0.3 0.3
0.5 0.5 0.5 0.5 0.5 0.5 0 0.5 0.5
0.7 0.7 0.7 0.7 0.7 0.7 0.7 0 0.7
1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 0


.

Consider the controllers WCETs ωci = {600, 600, 600, 600, 600, 600, 600, 1400, 1400}.
The bandwidth requirements for the controllers are computed as
ri = {0.84, 0.72, 0.66, 0.54, 0.48, 0.42, 0.36, 0.30, 0.28}. The simulation results are
summarised in Table ??.

p Controllers NSwitching Sequence Cost

For σT1

2 K8,K9 2
[(K9, 15), (K8, 14), [(K9, 21), (K8, 14), (K9, 11), (K8, 14)]∗

, (K9, 17), (K8, 14)]ω
29.44

4 K6, . . . ,K9 1 [(K9, 15), (K8, 5), (K9, 30), (K8, 10)]ω 11.70

8 K2, . . . ,K9 1 [(K9, 15), (K4, 5), (K7, 10), (K9, 15), (K7, 5), (K4, 10)]ω 3.90

9 K1, . . . ,K9 1
[(K9, 10), (K8, 5), (K3, 5), (K6, 10), (K8, 10), (K9, 5),
(K6, 5), (K3, 10)]ω

5.10

For σT2

2 K8,K9 1 [(K9, 20), (K8, 14), (K9, 16), (K8, 14), (K9, 22), (K8, 14)]ω 15.38

4 K6, . . . ,K9 1
[(K9, 20), (K8, 5), (K9, 25), (K8, 10), (K9, 30), (K8, 5),
(K9, 5)]ω

10.70

8 K2, . . . ,K9 1
[(K9, 10), (K6, 10), (K4, 5), (K7, 5), (K9, 15), (K7, 5),
(K4, 10), (K5, 5), (K7, 25), (K4, 5), (K9, 5)]ω

6.65

9 K1, . . . ,K9 1
[(K9, 5), (K8, 5), (K5, 10), (K3, 5), (K6, 5), (K8, 10), (K9, 5)
, (K6, 5), (K3, 10), (K4, 5), (K6, 25), (K3, 5), (K9, 5)]ω

6.85

Table 5. Simulation results for cruise control

6.8 Inverted Pendulum

The matrices A and B are given in [?] as

A =


0 1 0 0
0 -0.18 2.67 0
0 0 0 1
0 -0.45 31.18 0

 and B =


0

1.82
0

4.55

 .
We consider a maximum of p = 7 controllers. For i ∈ {1, . . . , p}, the sampling
periods are hi = 10−5 × {2.44, 2.98, 3.48, 4.78, 5.91, 6.11, 6.83}. The values of τij

are:

[τij] =



0 0.83 0.41 0.50 0.74 0.51 0.61
21.03 0 18.70 16.11 6.54 13.44 10.38
1.08 0.98 0 0.50 0.87 0.60 0.72
2.14 1.15 1.34 0 1.01 0.63 0.83
9.40 1.79 8.14 6.70 0 5.15 3.24
3.50 1.39 2.70 1.68 1.20 0 0.88
5.50 1.65 4.57 3.46 1.26 2.16 0


.

Consider the controllers WCETs ωci = {0.23}. The bandwidth requirements for
the controllers are computed as ri = {0.95, 0.78, 0.67, 0.49, 0.39, 0.38, 0.34}. The
simulation results are summarized in Table ??.

p Controllers Switching Sequence Cost

For σT1

2 K2,K5

[(K5, 60)]ω 12.603 K2,K5,K7

4 K2,K5, . . . ,K7

5 K2,K4, . . . ,K7 [(K6, 20), (K5, 30), (K6, 10)]ω 12.90

6 K2, . . . ,K7 [(K4, 20), (K7, 14), (K5, 9), (K7, 7), (K4, 10)]ω 11.28

7 K1, . . . ,K7 [(K2, 8), (K7, 7), (K3, 45)]ω 12.61

For σT2

2 K2,K5

[(K5, 100)]ω 14.003 K2,K5,K7

4 K2,K5, . . . ,K7

5 K2,K4, . . . ,K7
[(K5, 10), (K6, 17), (K5, 23), (K6, 17), (K5, 16),
(K6, 17)]ω

17.61

6 K2, . . . ,K7 [(K4, 30), (K5, 15), (K4, 20), (K7, 25), (K4, 10)]ω 15.90

7 K1, . . . ,K7
[(K2, 5), (K7, 5), (K6, 10), (K3, 17), (K6, 13), (K3, 45),
(K2, 5)]ω

15.32

Table 6. Results for inverted pendulum with N = 1.

6.9 Magnetically Suspended Ball

The matrices A and B are given in [?] as

A =

 0 1 0
980 0 -2.8
0 0 -100

 , B =

 0
0

100

 .
We consider a maximum of p = 10 controllers. For i ∈ {1, . . . , p}, the sampling
periods are hi = 10−12 × {8.61, 8.94, 9.23, 9.31, 9.62, 9.66, 9.86, 9.93, 10, 10}. The

values of τij are:

[τij] =



0 2.7 1.5 2.6 2.4 1.7 2.3 1.8 2.1 2
0.3 0 0.3 0.2 0.2 0.3 0.2 0.2 0.2 0.2
0.8 1.3 0 1.2 1.1 0.8 1.1 0.8 1.0 0.9
0.3 0.2 0.3 0 0.2 0.3 0.2 0.2 0.2 0.2
0.3 0.2 0.3 0.2 0 0.3 0.2 0.2 0.2 0.2
0.6 0.8 0.6 0.8 0.7 0 0.7 0.5 0.6 0.6
0.4 0.3 0.3 0.2 0.2 0.3 0 0.3 0.2 0.3
0.5 0.6 0.5 0.5 0.5 0.4 0.5 0 0.4 0.4
0.5 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0 0.3
0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0


.

Consider the controllers WCETs ωci = 10−8 ×
{3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 7, 7}. The bandwidth re-
quirements for the controllers are computed as ri =
{0.82, 0.79, 0.38, 0.38, 0.37, 0.37, 0.36, 0.36, 0.35, 0.35}. The simulation results are
summarized in Tables ?? and ??.

p Controllers N Switching Sequence Cost

2 K1,K3

1

[(K3, 60)]ω 10.20
4
K1,
K3,K6,K8

6
K1,K3,K6,
K8, . . . ,K10

9
K1,
K3, . . . ,K10

1 [(K3, 26), (K6, 3), (K3, 13), (K6, 3), (K3, 15)]ω 10.20

3,
4

[(K6, 10), (K3, 15), (K6, 3), (K3, 13), (K6, 3), (K3, 13),
(K6, 3), [(K3, 25), (K6, 3), (K3, 13), (K6, 3), (K3, 13),
(K6, 3)]∗, (K3, 26), (K6, 3), (K3, 13), (K6, 3), (K3, 15)]ω

30.60,
40.80

5

[(K3, 25), (K6, 3), (K3, 13), (K6, 3), (K3, 13), (K6, 3),
(K3, 25), (K6, 3), (K3, 13), (K6, 3), (K3, 13), (K6, 3),
(K3, 25), (K6, 3), (K3, 13), (K6, 3), (K3, 13), (K6, 3),
(K3, 25), (K6, 3), (K3, 13), (K6, 3), (K3, 13), (K6, 3),
(K3, 26), (K6, 3), (K3, 13), (K6, 3), (K3, 15)]ω

51.00

10K1, . . . ,K10

1 [(K3, 15), (K8, 15), (K3, 15), (K6, 15)]ω 3.90

5

[(K3, 15), (K6, 13), (K8, 2), (K3, 15), (K6, 13), (K8, 2),
(K3, 15), (K8, 15), (K3, 15), (K8, 15), (K3, 15), (K6, 13),
(K8, 2), (K3, 15), (K6, 13), (K8, 2), (K3, 15), (K6, 13),
(K8, 2), (K3, 15), (K8, 15), (K3, 15), (K6, 13), (K8, 2),
(K3, 15), (K6, 15)]ω

19.50

Table 7. Results for levitating ball with σT1

p Controllers N Switching Sequence Cost

2 K1,K3

1

[(K3, 100)]ω 11.00
6
K1,K3,K6,
K8, . . . ,K10

8
K1,K3,
K5, . . . ,K10

9
K1,
K3, . . . ,K10

1
[(K6, 10), (K3, 15), (K6, 3), (K3, 13), (K6, 3), (K3, 13),
(K6, 3), (K3, 26), (K6, 3), (K3, 13), (K6, 3), (K3, 15)]ω

11.00

3
[(K6, 5), (K3, 21), (K6, 3), (K3, 13), (K6, 3), [(K3, 36),
(K6, 3), (K3, 13), (K6, 3), (K3, 26), (K6, 3), (K3, 13),
(K6, 3)]∗, (K3, 39), (K6, 3), (K3, 13)]ω

33.00

10K1, . . . ,K10 1
[(K3, 10), (K6, 18), (K8, 2), (K3, 15), (K8, 35), (K6, 13),
(K8, 2), (K3, 5)]ω

4.70

Table 8. Results for levitating ball with σT2

6.10 Suspension System

The matrices A and B are given in [?] as

A =


0 1 0 0

-6.57 0 -25.26 -0.14
46.94 0 -48.17 1
1562.5 0 -1844.5 0

 , B =


0 0
0 6.57
0 -46.94
0 -1562.5

 .
We consider a maximum of p = 9 controllers. For i ∈ {1, . . . , p}, the sampling
periods are hi = 10−5 × {4.96, 5.79, 5.95, 6.18, 6.80, 6.85, 8.39, 9.42, 10.7}. The
values of τij are:

[τij] =



0 0.3 0.3 0.4 0.5 0.5 0.5 0.4 0.5
0.4 0 0.3 0.4 0.6 0.5 0.5 0.5 0.6
0.7 0.6 0 0.4 0.7 0.5 0.6 0.5 0.7
1.2 1 0.7 0 0.7 0.4 0.6 0.6 0.8
7.0 6.6 6 5.3 0 4.5 3.9 1.6 3.9
1.8 1.6 1.2 0.8 0.8 0 0.5 0.7 1
2.5 2.3 1.9 1.4 1 0.9 0 0.8 1.2
13.8 13.1 11.9 10.6 3.3 9.2 7.9 0 7.6
3.4 3.1 2.8 2.4 1.2 2 1.7 1 0


.

Consider the controllers WCETs ωci = {0.35}. The band-
width requirements for the controllers are computed as ri =
{0.71, 0.61, 0.59, 0.57, 0.52, 0.52, 0.42, 0.38, 0.33}. The simulation results are
summarised in Table ??.

p Controllers NSwitching Sequence Cost

For σT1

2 K5,K8
1 [(K5, 34), (K8, 16), (K5, 10)]ω 10.96
2 (K5, 34), (K8, 16), [(K5, 34), (K8, 26)]ω, (K5, 10) 20.52

6 K4, . . . ,K9 4 [(K4, 21), (K9, 8), (K8, 21), [(K4, 30), (K8, 30)]∗, (K4, 10)]ω 36.64

8 K2, . . . ,K9
1 [(K2, 21), (K6, 8), (K9, 7), (K5, 14), (K2, 10)]ω 12.36

2
[(K2, 21), (K6, 8), (K9, 7), (K5, 14), (K2, 30), (K5, 10),
(K8, 13), (K5, 7), (K2, 10)]ω

23.50

For σT2

2 K5,K8
1 [(K5, 65), (K8, 25), (K5, 10)]ω 15.50
2 [π1, [(K5, 25), (K8, 25), (K5, 50)]∗]ω 31.00

4
K5,
K7, . . . ,K9

3
[(K9, 65), (K8, 25), (K9, 35), (K8, 25), (K9, 80), (K5, 20),
(K7, 15), (K8, 25), (K9, 10)]ω

50.20

4
[(K9, 65), (K8, 25), (K9, 35), (K8, 25), (K9, 75), (K8, 25),
(K9, 80), (K5, 20), (K7, 15), (K8, 25), (K9, 10)]ω

66.95

5
[(K9, 65), [(K8, 25), (K9, 35), (K8, 25), (K9, 80), (K5, 20),
(K7, 15)]∗, (K8, 25), (K9, 10)]ω

83.65

Table 9. Results for suspension system

	Introduction
	Notation and Preliminaries
	Notation
	Control systems
	(Priced) Timed Automata
	Real Time Calculus

	Problem Formulation
	Adaptive Scheduling of Variable-rate Control Tasks
	Control Task Scheduling Constraints
	Task Set Characterization
	Scheduler Design
	Extending to Recurrent Schedules

	Simulation Results
	Discussion
	References

