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Introduction

Introduction

Model checking = process of automatically analyzing properties of
systems by exploring their state space

Finite state systems → properties can be investigated by
systematically exploring states
E.g., check whether particular set of states will be reached

Not possible for hybrid systems since number of states is infinite

However, for some hybrid systems one can find “equivalent” finite
state system by partitioning state space into finite number of sets
such that any two states in set exhibit similar behavior
→ analyze hybrid system by working with sets of partition

Generation and analysis of finite partition can be carried out by
computer
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Modeling framework Generalized Transition Systems

Generalized Transition Systems [PT09]

Definition (System)

A system S is a sextuple (X ,X0,U, - ,Y ,H) consisting of:

a set of states X ;

a set of initial states X0 ⊆ X

a set of inputs U;

a transition relation - ⊆ X × U × X ;

a set of outputs Y (2AP);

an output map H : X → Y .

(a set of final states XF ⊆ X )

A system is said to be:

metric, if the output set Y is equipped with a metric d : Y × Y → R+
0 ;

countable, if X is a countable set;

finite, if X is a finite set.

blocking if ∃x ∈ X for which Post(x) = ∅
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Modeling framework Generalized Transition Systems

Notes

Shorthand x → x ′ instead of (x , x ′) ∈ -

Definition
For x ∈ X , the set Post(x) of direct successors of x is defined by

Post(x) = { x ′ ∈ X | x → x ′ }.

For x ∈ X , the set Pre(x) of direct predecessors of x is defined by

Pre(x) = { x ′ ∈ X | x ′ → x }.

When we consider non-autonomous systems |U| > 1:

Postua(xa) =
{

x ′a ∈ Xa | xa
ua

a
- x ′a

}
, Ua(xa) = {u ∈ Ua | |Postua(xa)| 6= ∅}

Definition (Determinism)

A system S is deterministic if ∀x ∈ X , u ∈ U(x) |(Postu(x))| = 1, where |(·)| denotes the
cardinality of a set. Else S is non-deterministic. In the context of computer science often
|X0| = 1 is also required to talk about determinism.
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Modeling framework Generalized Transition Systems

Example: model of a traffic light

System description: A traffic light can be red, green, amber or black (not
working). The traffic light might stop working at any time. After it has
been repaired, it turns red. Initially, the light is red.

X = {1, 2, 3, 4, 5}
1 red
2 amber and red
3 green
4 amber
5 black
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Modeling framework Generalized Transition Systems

Example: model of a traffic light

System description: A traffic light can be red, green, amber or black (not
working). The traffic light might stop working at any time. After it has
been repaired, it turns red. Initially, the light is red.

X = {1, 2, 3, 4, 5}
→ = {(1, 2), (2, 3), (3, 4), (4, 1), (1, 5), (2, 5), (3, 5), (4, 5), (5, 1)}
X0 = {1}

AP = {r , a, g}
Y = 2AP

H = {1 7→ {r}, 2 7→ {r , a}, 3 7→ {g}, 4 7→ {a}, 5 7→ ∅}
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Modeling framework Generalized Transition Systems

Example: model of a traffic light

System description: A traffic light can be red, green, amber or black (not
working). The traffic light might stop working at any time. After it has
been repaired, it turns red. Initially, the light is red.
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Modeling framework Control systems

Control systems

Definition:

A control system Σ is a tuple Σ = (Rn,U,U , f ) where:

Rn is the state space;

U ⊆ Rm is the input set;

U is a set of “nice” functions from R+
0 to U;

f : Rn × U→ Rn is a “nice” function;

A curve ξ : R+
0 → Rn is a trajectory of Σ if there exists υ ∈ U satisfying:

ξ̇ = f (ξ, υ).

ξxυ(t) denotes the value of the trajectory of Σ at time t under the input υ
from initial condition x = ξxυ(0).
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Modeling framework Control systems

Control systems as GTS

Given Σ = (Rn,U,U , f ) and a sampling time τ ∈ R+, the metric system
Sτ (Σ) = (X ,X0,U,−→,Y ,H) associated with Σ is given by:

X = Rn;

X0 = Rn;

U: all the curves in U of duration τ ;

x
υ- x ′ iff ξxυ(τ) = x ′;

Y = Rn, equipped with the metric d(y , y ′) = ‖y − y ′‖ for any
y , y ′ ∈ Rn;

H = 1X .

Sτ (Σ) is an infinite system!

Can we replace Sτ (Σ) with an equivalent and yet finite system?
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Modeling framework Relations between systems

Systems relations

Approximate Simulation Relation

Sa !ε
S Sb

All behaviors (outputs sequences) in Sa are within ε of behaviors in Sb

(assuming a common metric for their output sets, and non-blocking
systems).
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Modeling framework Relations between systems

Approximate (bi)simulation

Definition (Girard and Pappas 2007)

Consider metric systems Sa = (Xa,Xa0,Ua,
a
- ,Ya,Ha) and

Sb = (Xb,Xb0,Ub,
b
- ,Yb,Hb) with the same output sets Ya = Yb and metric d. For

ε ∈ R+
0 , a relation R ⊆ Xa × Xb is an ε-approximate simulation relation from Sa to Sb

(Sa �εS Sb) if the following conditions are satisfied:

(i) ∀xa0 ∈ Xa0, ∃xb0 ∈ Xb0 with (xa0, xb0) ∈ R;

(ii) ∀(xa, xb) ∈ R, we have d(Ha(xa),Hb(xb)) ≤ ε;

(iii) ∀(xa, xb) ∈ R, xa
ua

a
- x ′a in Sa implies the existence of xb

ub

b
- x ′b in Sb satisfying

(x ′a, x
′
b) ∈ R

A relation R ⊆ Xa × Xb is said to be an ε-approximate bisimulation relation between Sa

and Sb (Sa
∼=ε
S Sb) if R is an ε-approximate simulation relation from Sa to Sb and R−1 is

an ε-approximate simulation relation from Sb to Sa.

Reference:

PT09 (Chapters 4 and 9) Tabuada, Paulo. Verification and control of hybrid systems: a symbolic approach. Springer Science
& Business Media, 2009. http://www.springer.com/gp/book/9781441902238
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Modeling framework Relations between systems

Approximate simulation

a b
d(Ha(a),Hb(b)) ≤ ε

a′

∀u

b′

∃v

d(Ha(a′),Hb(b′)) ≤ ε
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Modeling framework Relations between systems

Approximate bisimulation

a b
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Modeling framework Relations between systems

Verification overview

discrete abstraction

continuous 
dynamics

d�/dt = f(�, ⇥)
hardware
+software

Hybrid 
dynamics

property

SS� (�)

Sabs �0
S Sspec

Sspec��
S

�
� S

Σ is a (hybrid) autonomous system,

Sτ (Σ) is the system representing the exact time discretization of Σ with step τ .
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Modeling framework Relations between systems

Controller refinement

Approximate Alternating Simulation Relation

Sa Sb!ε
AS

Controllers for Sa can be refined into controllers for Sb.
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Modeling framework Relations between systems

Alternating approximate (bi)simulation

Definition (Pola and Tabuada 2009)

Consider metric systems Sa = (Xa,Xa0,Ua,
a
- ,Ya,Ha) and

Sb = (Xb,Xb0,Ub,
b
- ,Yb,Hb) with the same output sets Ya = Yb and metric d. For

ε ∈ R+
0 , a relation R ⊆ Xa × Xb is an alternating ε-approximate simulation relation from

Sa to Sb (Sa �εAS Sb) if the following conditions are satisfied:

(i) ∀xa0 ∈ Xa0, ∃xb0 ∈ Xb0 with (xa0, xb0) ∈ R;

(ii) ∀(xa, xb) ∈ R, we have d(Ha(xa),Hb(xb)) ≤ ε;

(iii) ∀ua ∈ Ua(xa) ∃ub ∈ Ub(xb) such that ∀x ′b ∈ Postub (xb) ∃x ′a ∈ Postua(xa) satisfying
(x ′a, x

′
b) ∈ R.

A relation R ⊆ Xa × Xb is said to be an alternating ε-approximate bisimulation relation
between Sa and Sb (Sa

∼=ε
AS Sb) if R is an alternating ε-approximate simulation relation

from Sa to Sb and R−1 is an alternating ε-approximate simulation relation from Sb to Sa.

Reference:

PT09 (Chapters 4 and 9) Tabuada, Paulo. Verification and control of hybrid systems: a symbolic approach. Springer Science
& Business Media, 2009. http://www.springer.com/gp/book/9781441902238
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Modeling framework Relations between systems

Alternating approximate simulation

xa xb
R

xa1 xa2

ua ua

x ′b1 x ′b2

ub ub

R

R
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Modeling framework Relations between systems

Controller synthesis overview

hybrid controller

q(j + 1) = g(q(j), �(t))
⇥(t) = k(�(t), q(j))

discrete abstraction discrete controller

continuous 
dynamics

d�/dt = f(�, ⇥)
hardware
+software

Hybrid 
dynamics

S

Σ is a (hybrid) control system

Sτ (Σ) is the system representing the exact time discretization of Σ with step τ .
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Modeling framework Relations between systems

Alternating Simulation vs Alternating Bisimulation

Simulation: If a controller is found for the abstraction, then a
controller can be constructed for the concrete system.

∃Cs ⇒ ∃Cc

Bisimulation: Additionally, if no controller is found for the
abstraction, then no controller can be constructed for the concrete
system.

@Cs ⇒ @Cc

Or putting together the two logical statements:

∃Cs ⇔ ∃Cc
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Modeling framework Fixed Point Algorithms

Verification/Controller design: Fixed points

Consider some system Sa, the following two problems can be solved through a fixed
point iteration:

Sc �0
S Sspec

Safety (in W ): Controller: Sc = (Xc ,Xc0,Ua,
c
- )

Xc = Zc = limi→∞ F i
W (Xa)

Xc0 = Zc ∩ Xa0

xc
ua

c
- x ′

c if ∅ 6= Postua(xc) ⊆ Zc

FW (Z) = {xa ∈ Z | xa ∈W and∃ua ∈ Ua(xa) : ∅ 6= Postua(xa) ⊆ Z}
Reachability (to W ): Controller: Sc = (Xc ,Xc0,Ua,

c
- )

Xc = Zc = limi→∞ G i
W (∅)

Xc0 = Zc ∩ Xa0

xc
ua

c
- x ′

c if ∃k ∈ N such that xc /∈ G k
W (∅) and

∅ 6= Postua(xc) ⊆ G k
W (∅)

GW (Z) = {xa ∈ Xa | xa ∈W or ∃ua ∈ Ua(xa) : ∅ 6= Postua(xa) ⊆ Z}

Reference:

PT09 (Chapter 6) Tabuada, Paulo. Verification and control of hybrid systems: a symbolic approach. Springer Science &
Business Media, 2009. http://www.springer.com/gp/book/9781441902238Manuel Mazo Jr. (TU Delft) Modeling & Control of Hybrid Systems DISC, 2020 26 / 68
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Construction of Abstractions Exact abstractions

Quotient system

Definition

Let S = (X ,X0,U, - ,Y ,H) be a system and let Q be an equivalence relation
on X such that (x , x ′) ∈ Q implies that H(x) = H(x ′). The quotient of S by Q,

denoted by S/Q , is the system S/Q =
(

X/Q ,X/Q0,U/Q , /Q
- ,Y/Q ,H/Q

)
consisting of:

X/Q = X/Q;
X/Q0 =

{
x/Q ∈ X/Q | x/Q ∩ X0 6= ∅

}
;

U/Q = U;

x/Q
u

/Q
- x ′/Q if there exists x

u- x ′ in S with x ∈ x/Q and x ′ ∈ x ′/Q ;

Y/Q = Y ;
H/Q(x/Q) = H(x) for some x ∈ x/Q .

When the equivalence relation Q has finitely many equivalence classes, S/Q is
guaranteed to be finite.

Reference:

PT09 (Chapter 4) Tabuada, Paulo. Verification and control of hybrid systems: a symbolic approach. Springer Science &
Business Media, 2009. http://www.springer.com/gp/book/9781441902238

Manuel Mazo Jr. (TU Delft) Modeling & Control of Hybrid Systems DISC, 2020 28 / 68

http://www.springer.com/gp/book/9781441902238


Construction of Abstractions Exact abstractions

Quotient system

Definition

Let S = (X ,X0,U, - ,Y ,H) be a system and let Q be an equivalence relation
on X such that (x , x ′) ∈ Q implies that H(x) = H(x ′). The quotient of S by Q,

denoted by S/Q , is the system S/Q =
(

X/Q ,X/Q0,U/Q , /Q
- ,Y/Q ,H/Q

)
consisting of:

X/Q = X/Q;
X/Q0 =

{
x/Q ∈ X/Q | x/Q ∩ X0 6= ∅

}
;

U/Q = U;

x/Q
u

/Q
- x ′/Q if there exists x

u- x ′ in S with x ∈ x/Q and x ′ ∈ x ′/Q ;

Y/Q = Y ;
H/Q(x/Q) = H(x) for some x ∈ x/Q .

When the equivalence relation Q has finitely many equivalence classes, S/Q is
guaranteed to be finite.

Reference:

PT09 (Chapter 4) Tabuada, Paulo. Verification and control of hybrid systems: a symbolic approach. Springer Science &
Business Media, 2009. http://www.springer.com/gp/book/9781441902238

Manuel Mazo Jr. (TU Delft) Modeling & Control of Hybrid Systems DISC, 2020 28 / 68

http://www.springer.com/gp/book/9781441902238


Construction of Abstractions Exact abstractions

Bisimulation Algorithm

Theorem

IF algorithm 1 terminates, then S/P′ ∼=0
AS S.

Input: Equivalence Relation P and system S
Output: P ′
P ′ := P;
while ∃P,P ′ ∈ P ′ such that ∅ 6= P ′ ∩ Pre(P) 6= P ′ do

P̂ ′ := ∅;
forall P,P ′ ∈ P ′ do

Pa := P ′ ∩ Pre(P);
Pb := P ′\Pre(P);

P̂ ′ := P̂ ′ ∪ {Pa,Pb};
end

P ′ := P̂ ′;
end

Algorithm 1: Computation of a bisimulation relation, respecting parti-
tion P, between S and S .

∀W ⊆ X , Pre(W ) =

{
x ∈ X | x

u- x′ for some u ∈ U and x′ ∈ W

}
.

Reference:

PT09 (Chapters 4.2 and 5.2) Tabuada, Paulo. Verification and control of hybrid systems: a symbolic approach. Springer
Science & Business Media, 2009. http://www.springer.com/gp/book/9781441902238
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Construction of Abstractions Exact abstractions

Constructing Similar Models

Theorem

Algorithm 2 results in S/P′ �0
AS S �0

S S/P′ .

Input: Equivalence Relation P, system S and k ∈ N0

Output: P ′
P ′ := P;
i := 1;
while i ≤ k do

i := i + 1;

P̂ ′ := ∅;
forall P,P ′ ∈ P ′ do

Pa := P ′ ∩ Pre(P);
Pb := P ′\Pre(P);

P̂ ′ := P̂ ′ ∪ {Pa,Pb};
end

P ′ := P̂ ′;
end

Algorithm 2: Computation of a simulation relation, respecting partition
P, between S and S .

Reference:

PT09 (Chapters 4.2 and 5.2) Tabuada, Paulo. Verification and control of hybrid systems: a symbolic approach. Springer
Science & Business Media, 2009. http://www.springer.com/gp/book/9781441902238
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Construction of Abstractions Exact abstractions

Exact symbolic models

A natural question one may ask is:

When do there exist exact symbolic abstractions of infinite systems?

In general they do not exist, not even for simple linear systems

Some particular cases when they do exist:

Order Minimal Hybrid Systems
Linear Discrete Time Systems with adapted sets
Multi-affine control systems with rectangular sets
Timed Automata
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Construction of Abstractions Exact abstractions

Construction of exact symbolic models
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Construction of Abstractions Approximate abstractions

Incremental stability notion

Definition (Angeli 2002)

A control system Σ is incrementally input-to-state stable (δ-ISS) if it is forward
complete and there exist a KL function β and a K∞ function γ such that for any
t ∈ R+

0 , any x , x ′ ∈ Rn, and any υ, υ′ ∈ U the following condition is satisfied:

‖ξxυ(t)− ξx′υ′(t)‖ ≤ β
(∥∥x − x ′

∥∥ , t)+ γ
(∥∥υ − υ′∥∥∞) .

Reference:

Ang02 Angeli, David. ”A Lyapunov approach to incremental stability properties.” IEEE Transactions on Automatic Control 47.3
(2002): 410-421.
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Construction of Abstractions Approximate abstractions

Existence of bisimilar symbolic models

Theorem (Girard, Pola, Tabuada 2008)

Let Σ be a control system and let ε ∈ R+ be any desired precision. If Σ is δ-ISS, then
the restriction of Sτ (Σ) to any compact subset X of Rn is ε-approximate bisimilar to a
finite system.

Infinite systemFinite system

⇠̇ = f(⇠, �)
⇠="

AS

Idea of the proof: show that accumulation of successive “rounding errors” is
compensated by the incremental stability of the system.

Reference:

Gir08 Pola, Giordano, Antoine Girard, and Paulo Tabuada. ”Approximately bisimilar symbolic models for nonlinear control
systems.” Automatica 44.10 (2008): 2508-2516.

PT09 (Chapters 10 and 11) Tabuada, Paulo. Verification and control of hybrid systems: a symbolic approach. Springer
Science & Business Media, 2009. http://www.springer.com/gp/book/9781441902238
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Construction of Abstractions Approximate abstractions

δ-ISS construction

!
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Construction of Abstractions Approximate abstractions

Existence of symbolic models
(without stability assumptions)

If Σ is not δ-ISS, are we still able to construct a finite system for Σ?

Theorem (Zamani, Pola, Mazo, Tabuada 2012)

Let Σ be a control system and let ε ∈ R+ be any desired precision. The restriction of
Sτ (Σ) to any compact subset X of Rn alternatingly ε-approximately simulates a finite
system and is ε-approximately simulated by the finite system.

Infinite systemfinite system

⇠̇ = f(⇠, �)�"
AS

finite system
�"

S

Reference:

Zam12 Zamani, Majid, Pola, Giordano, Mazo Jr., Manuel, and Tabuada, Paulo. ”Symbolic models for nonlinear control systems
without stability assumptions.” Automatic Control, IEEE Transactions on 57.7 (2012): 1804-1809.

Manuel Mazo Jr. (TU Delft) Modeling & Control of Hybrid Systems DISC, 2020 36 / 68



Construction of Abstractions Approximate abstractions

Existence of symbolic models
(without stability assumptions)

If Σ is not δ-ISS, are we still able to construct a finite system for Σ?

Theorem (Zamani, Pola, Mazo, Tabuada 2012)

Let Σ be a control system and let ε ∈ R+ be any desired precision. The restriction of
Sτ (Σ) to any compact subset X of Rn alternatingly ε-approximately simulates a finite
system and is ε-approximately simulated by the finite system.

Infinite systemfinite system

⇠̇ = f(⇠, �)�"
AS

finite system
�"

S

Reference:

Zam12 Zamani, Majid, Pola, Giordano, Mazo Jr., Manuel, and Tabuada, Paulo. ”Symbolic models for nonlinear control systems
without stability assumptions.” Automatic Control, IEEE Transactions on 57.7 (2012): 1804-1809.

Manuel Mazo Jr. (TU Delft) Modeling & Control of Hybrid Systems DISC, 2020 36 / 68



Construction of Abstractions Approximate abstractions

Unstable case construction

!
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Construction of Abstractions Hybrid Automaton Abstraction

Transition system of hybrid automaton

Hybrid automaton can be transformed into transition system by
abstracting away time

Consider hybrid automaton H = (Q,X , Init, f , Inv,E ,G ,R) and
“final” set of states F ⊆ Q × S (no inputs U)

Define

X = Q × X , i.e., x = (q, x)
X0 = Init
XF = F
Y = Q
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Construction of Abstractions Hybrid Automaton Abstraction

Transition system of hybrid automaton (cont.)

transition relation δ : X→ X, δ(x) = {x′|x′ ∈ Post(x)}, consists of
two parts:

discrete transition relation δe for each edge e = (q, q′) ∈ E :

δe(q̂, x̂) =

{
{q′} × R(e, x̂) if q̂ = q and x̂ ∈ G (e)
∅ if q̂ 6= q or x̂ 6∈ G (e)

continuous transition relation δC :

δC (q̂, x̂) = {(q̂′, x̂ ′) | q̂′ = q̂ and ∃tf ≥ 0, x(tf) = x̂ ′∧
∀t ∈ [0, tf ], x(t) ∈ Inv(q̂)}

where x(·) is solution of

ẋ = f (q̂, x) with x(0) = x̂

Overall transition relation is then

δ(x) = δC (x) ∪
⋃
e∈E

δe(x)
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Construction of Abstractions Hybrid Automaton Abstraction

Transition system of hybrid automaton (cont.)

Time has been abstracted away:
we do not care how long it takes to get from s to s ′, we only care
whether it is possible to get there eventually

→ transition system captures sequence of events that hybrid system may
experience, but not timing of these events
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Construction of Abstractions Timed Automata Bisimilar Abstraction

Timed-Automata

Definition (Timed Automaton)

A timed automaton TA is a sextuple (L, `0,Act,C ,E , Inv) where

L is the set of finitely many locations (or nodes);

`0 ∈ L is the initial location;

Act is the set of finitely many actions;

C is the set of finitely many real-valued clocks;

E ⊆ L× B(C )× Act× 2C × L is the set of edges;

Inv : L→ B(C ) assigns invariants to locations.

where B(C ) to denote the set of clock constraints.

Reference:

Al94 Alur, Rajeev, and David L. Dill. ”A theory of timed automata.” Theoretical computer science 126.2 (1994): 183-235.
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Construction of Abstractions Timed Automata Bisimilar Abstraction

Timed automata (cont.)

Given any TA whose definition involves rational and/or negative
constants, we can define an equivalent TA only involving non-negative
integers (by “scaling” and “shifting” )

Transition System corresponding to TA always has a finite
bisimulation

Standard bisimulation for timed automata is region graph
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Construction of Abstractions Timed Automata Bisimilar Abstraction

Region graph

⇔
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Construction of Abstractions Timed Automata Bisimilar Abstraction

Construction of region graph

Assume w.l.o.g. that all constants are non-negative integers

Let Ci be largest constant with which xi is compared in initial sets,
guards, invariants and resets. In example: C1 = 5 and C2 = 3

Knowing these bounds Ci , xi could be compared with any integer
M ∈ {0, 1 . . . ,Ci} in guards, resets or initial condition set.

Hence, discrete transitions of timed automaton may be able to
“distinguish” states with xi < M from states with xi = M and from
states with xi > M

Manuel Mazo Jr. (TU Delft) Modeling & Control of Hybrid Systems DISC, 2020 44 / 68



Construction of Abstractions Timed Automata Bisimilar Abstraction

Construction of region graph (cont.)

Add sets to candidate bisimulation:

for x1 : x1 ∈ (0, 1), x1 ∈ (1, 2), x1 ∈ (2, 3), x1 ∈ (3, 4), x1 ∈ (4, 5), x1 ∈ (5,∞)

x1 = 0, x1 = 1, x1 = 2, x1 = 3, x1 = 4, x1 = 5

for x2 : x2 ∈ (0, 1), x2 ∈ (1, 2), x2 ∈ (2, 3), x2 ∈ (3,∞)

x2 = 0, x2 = 1, x2 = 2, x2 = 3

Products of all sets:

{x ∈ R2 | x1 ∈ (0, 1) ∧ x2 ∈ (0, 1)} {x ∈ R2 | x1 ∈ (0, 1) ∧ x2 = 1}

{x ∈ R2 | x1 = 1 ∧ x2 ∈ (0, 1)} {x ∈ R2 | x1 = 1 ∧ x2 = 1}

{x ∈ R2 | x1 ∈ (1, 2) ∧ x2 ∈ (3,∞)}, etc.

define all sets in R2 that discrete dynamics can distinguish
→ open squares, open horizontal and vertical line segments,

integer points, and open, unbounded rectangles
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Construction of Abstractions Timed Automata Bisimilar Abstraction

Construction of region graph (cont.)

Since ẋ1 = ẋ2 = 1, continuous states
move diagonally up along 45◦ lines

→ by allowing time to flow timed automaton
may distinguish points below diagonal
of each square, points above diagonal,
and points on the diagonal

E.g., points above diagonal of square

{x ∈ R2 | x1 ∈ (0, 1) ∧ x2 ∈ (0, 1)}

will leave square through line {x ∈ R2 | x1 ∈ (0, 1) ∧ x2 = 1}
Points below diagonal leave square through line

{x ∈ R2 | x1 = 1 ∧ x2 ∈ (0, 1)}

Points on diagonal leave square through point (1, 1)
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Construction of Abstractions Timed Automata Bisimilar Abstraction

Construction of region graph (cont.)

Split each open square in three:
two open triangles and
open diagonal line segment

→ is enough to generate bisimulation:

Theorem

The region graph is finite bisimulation of timed automaton

Disadvantage: total number of regions in the region graph grows very
quickly (exponentially) as n increases
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Temporal Logics Specifications

Path fragment, path, trace

nomenclature: path, run, execution, trajectory are synonyms

Definition

Consider the transition system < S ,→, I ,AP, L >.

A finite path fragment is a finite state sequence s0s1 . . . sn for some n ≥ 0
such that si ∈ Post(si−1) for all 0 < i ≤ n.

An infinite path fragment is an infinite state sequence s0s1 . . . such that
si ∈ Post(si−1) for all i > 0.

A path fragment is initial if s0 ∈ I .

A path is an initial infinite path fragment → Paths(TS)

A trace is the “output” of a path: L(s0)L(s1) . . .
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Temporal Logics Specifications

Path

// 1

��
,,2

��

444

^^

// 5

ll

3

@@ 55

Give an example of a finite initial path fragment:

12341

Give an example of an initial infinite path fragment (a path):

(15)ω
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Temporal Logics Specifications

Some notational conventions

let π = s0s1 . . . be an infinite path fragment (notions below apply to
finite path as well)

for j ≥ 0, the jth state of π, sj is denoted by π[j ] (initial state is
indexed by 0)

for j ≥ 0, the jth prefix of π, s0s1 . . . sj is denoted by π[..j ]

π[..j]︷ ︸︸ ︷
s0s1 . . . sj−1sj sj+1 . . .

for j ≥ 0, the jth suffix of π, sjsj+1 . . . is denoted by π[j ..]

s0s1 . . . sj−1

π[j ..]︷ ︸︸ ︷
sjsj+1 . . .

the set of infinite path fragments π with π[0] = s is denoted by
Paths(s)
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Temporal Logics Specifications

Modal logics

based on propositional and predicate logic

used to reason about objects with modalities
(expressed via modal operators)

in particular, modal operators qualify temporal expressions

in this lecture we shall focus on LTL,
other temporal logics have been proposed:

1 LTL: linear temporal logic
2 CTL: computational tree logic
3 MTL: metric temporal logic (”robust” LTL)
4 STL: signal temporal logic (continuous time TL)
5 CTL*,. . .
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Temporal Logics Specifications

Syntax of LTL

ϕ ::= true | a | ϕ ∧ ϕ | ¬ϕ | ©ϕ | ϕ U ϕ, a ∈ AP

alternative expression of more formulae

ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2)
ϕ1 ⇒ ϕ2 = ¬ϕ1 ∨ ϕ2

and of two temporal modalities

♦ϕ = true U ϕ
�ϕ = ¬♦¬ϕ
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Temporal Logics Specifications

Alternative syntax in the literature

you may encounter the following notations:

Xϕ : ©ϕ
Fϕ : ♦ϕ
Gϕ : �ϕ

(notation on left-hand side from [CGP99], on right-hand side from [BK08])
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Temporal Logics Specifications

Semantics of LTL

TS |= ϕ iff ∀s ∈ I : s |= ϕ

where
s |= ϕ iff ∀π ∈ Paths(s) : π |= ϕ

and where (cf. LTL syntax)

π |= true
π |= a iff a ∈ L(π[0])

π |= ϕ ∧ ψ iff π |= ϕ ∧ π |= ψ
π |= ¬ϕ iff π 6|= ϕ
π |=©ϕ iff π[1..] |= ϕ

π |= ϕ U ψ iff ∃i ≥ 0 : π[i ..] |= ψ ∧ ∀0 ≤ j < i : π[j ..] |= ϕ
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Temporal Logics Specifications

LTL properties for the traffic light model

how to express the property
“the light is infinitely often red”

by an LTL formula?

�♦red

how to express the property
“once green, the light cannot become red immediately”

by an LTL formula?

�(green⇒ ¬©red)
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Temporal Logics Specifications

Verification of LTL specs is over linear-time paths

back to the traffic light model, consider the following path:

π : 1 // 2 // 3 // 4 // 1 // 5 // · · ·

question: π |= red?

answer: yes
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Temporal Logics Specifications

Classes of LTL specifications

invariance properties: �ϕ, where ϕ ::= true | a | ϕ ∧ ϕ | ¬ϕ

example: �¬red
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Temporal Logics Specifications

Classes of LTL specifications

safety properties: “nothing bad ever happens”

example: “a red light is immediately preceded by amber”

question: how can we express this property in LTL?

answer: �(©red⇒ amber)
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Temporal Logics Specifications

Classes of LTL specifications

Two major classes:

liveness properties: “something good eventually happens”

e.g.: “the light is infinitely often red”

question: how do we express this property in LTL?

answer: �♦red
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Temporal Logics Specifications

LTL and Büchi Automata

Definition (Büchi Automaton)

A Büchi Automaton is an automaton in which the accepting condition is
given by infinitely often visiting one state in the set of final states.

Theorem (Büchi Automata for LTL)

Every LTL formula accepts an equivalent Büchi Automaton representation,
i.e. one automaton accepting the same language as the LTL formula.

http://www.lsv.fr/~gastin/ltl2ba/index.php

a ∧ ♦b a ∧ ♦�b
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Temporal Logics Specifications

Comments on LTL model checking

Model Checking: Does model satisfy the formalized property?
Answer: Yes/No(+ counter-example)

automated and computer aided technique(s)

guarantees are provided with respect to models!

many advanced techniques for scaling-up model checking:

on-the-fly procedures
symbolic procedures with BDD,
BMC,
use of counter-examples,
Craig interpolation and induction,
abstractions and refinements
compositional verification

SPIN is an LTL model checker widely used
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Tools

Outline

1 Introduction

2 Modeling framework
Generalized Transition Systems
Control systems
Relations between systems
Fixed Point Algorithms

3 Construction of Abstractions
Exact abstractions
Approximate abstractions
Hybrid Automaton Abstraction
Timed Automata Bisimilar Abstraction

4 Temporal Logics Specifications

5 Tools
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Tools

Tools: Verification

There is a large number of tools that enable different levels of verification of Hybrid
Systems:

Reachability computation:

MATISSE - Approximate (bi)simulations linear systems,
reachability/safety, zonotopes.
Ariadne, d/dt, SpaceEX, Breach, HSolver - Precise computation of
reachability/safety for hybrid systems, including non-linear ODEs.
MPT, Hybrid Toolbox, HYSDEL - MPC tools, convex optimization,
reachability/safety.
(ProHVer) PHVer - (Probabilistic) reachability/safety computation
for linear hybrid automata, compositional reasoning.
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Tools

Tools: Verification

There is a large number of tools that enable different levels of verification of Hybrid
Systems:

Complex specifications:

KeYmaera - Differential Dynamic Logic (dL) verification. Allows
non-linearities in ODE’s, guards, etc.
HybridSAL - LTL model checking, relies on SAT and SMT solvers. Allows
non-linearities in ODE’s, guards, etc.
S-TaLiRo - Metric Temporal Logic verification. Temporal logic robustness.
FAUST2 - Probabilistic CTL verification of discrete-time Markov Processes.
Checkmate - Always CTL verification for linear hybrid automata.

Special types of Hybrid Systems:

UPPAAL - Timed Automata
VeriSiMPL - Max-Plus Linear Systems.
SimHPN - Hybrid Petri Nets.
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Tools

Tools: Synthesis

PESSOA - Non-linear dynamics, safety and reachability. (Not maintained)

SCOTS - Non-linear dynamics, safety and reachability. (Faster implementation of
PESSOA)

CoSyMa - Incrementally stable switched dynamics, safety or reachability.

LTLMoP - Single integrator dynamics, generalize reactive properties.

TuLiP - Affine dynamics, LTL properties, receding horizon.

LTLCon - Affine Dynamics, LTL properties.

Con-Pas2 -Piecewise Affine Systems, LTL properties.

UPPAAL - TiGA/CORA/Stratego - Synthesis versions of UPPAAL, for
timed-automata.

A thorough list of tools for synthesis and verification can be found here:
http://hybrid-systems.ieeecss.org/tc-hybrid/tools-hybrid-systems
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