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Introduction: what we study in this lecture

{
ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D

(H)
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3/41 Romain Postoyan - CNRS



Introduction: when does this happen?

3/41 Romain Postoyan - CNRS



Introduction: when does this happen?

3/41 Romain Postoyan - CNRS



Introduction: when does this happen?

3/41 Romain Postoyan - CNRS



Introduction: when does this happen?

3/41 Romain Postoyan - CNRS



Introduction: presentation style

Much shorter and much less technical than the two previous lectures

We go through each of these categories and present a sample of techniques at a high
level.

Far from being an exhaustive view of the field

List of references at the end.

Many of these techniques have not been developed with the hybrid formalism we saw in
the previous lectures
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Hybrid plant: set-up
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Hybrid plant: model & objective

Hybrid plant {
ẋp ∈ Fp(xp , u) (xp , u) ∈ Cp

x+
p ∈ Gp(xp , u) (xp , u) ∈ Dp ,

(Hc )

where

• xp is the plant state,

• u is the control input.

Objective

To design a controller to stabilize a set for Hc .
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Hybrid plant: switched control

Switched systems
ẋ = fσ(x , u), (SW)

where

• x is the state,

• σ is the switching signal, which may be used for control,

• u is the control input.

We can model SW as H, as we briefly saw.

With no doubt, one of the most studied hybrid control problems.

Various approaches are available in the literature.

General idea: (to switch) to make a Lyapunov function decrease “overall” along
solutions.

→ not easy to construct such a Lyapunov function → (average) dwell-time conditions.
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Hybrid plant: mechanical systems with impact

(Source Wikimedia)

Largely studied in the literature due to its numerous applications

Challenge: to deal with limit cycle, special type of closed attractor.

Most results not developed within the hybrid formalism.
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Hybrid plant: control Lyapunov function

To prove stability, we typically use a Lyapunov function

Control Lyapunov function (CLF) are functions, which can be used to construct control
laws to enforce the Lyapunov conditions

Consider the differential equation
ẋ = f (x , u),

we say that V is a CLF with respect to closed set A ⊂ Rn for this system if there exist
α1, α2 ∈ K∞ and ρ positive definite such that:

• for all x ∈ Rn, α1(|x |A) ≤ V (x) ≤ α2(|x |A),

• for all x ∈ Rn, there exists u ∈ Rm such that

〈∇V (x), f (x , u)〉 ≤ −ρ(|x |A).

Concept extended to hybrid systems.

Not common technique, largely underdeveloped in my opinion.
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Hybrid plant: backstepping

Backstepping is a popular nonlinear control technique for differential equations of the
form (strict feedback)

ẋ1 = f1(x1) + g(x1)x2

ẋ1 = u.

Backstepping has been proposed for a class of hybrid systems.
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Hybrid controller: set-up
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Hybrid controller: motivation

Continuous-time plant model
ẋ = f (x , u) (CT)

(we could consider a discrete-time plant model, but this is less standard)

Recall: when CT is

• linear, various explicit control techniques are available (pole placement, LQR
control, tracking control etc.),

• nonlinear, no general explicit methodology → solutions for classes of systems.

Why a hybrid controller?

• to improve performance of continuous-time feedbacks,

• to overcome fundamental limitations of continuous-time feedbacks,

• to ease the controller design.
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Hybrid controller: Brockett integrator

Brockett integrator
ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1 − x1u2

(1)

The origin is not globally stabilizable by a continuous feedback law

Mathematical curiosity? → wheeled mobile robot, induction motor with high-current
loops.
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Hybrid controller: Brockett integrator

Brockett integrator
ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1 − x1u2

(1)

The origin is not globally stabilizable by a continuous feedback law

Mathematical curiosity? → wheeled mobile robot, induction motor with high-current
loops.

Possible to globally asymptotically stabilize with discontinuous/hybrid feedbacks.
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Hybrid controller: reset control

Mostly, but not exclusively, for linear time-invariant systems

Dynamic controller, like PI (proportional-integral)

Idea: to suitably reset the state of the controller to improve performances.

Can significantly improve the system response in terms of overshoot and transient time.
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Hybrid controller: uniting control

State- and output-feedback solutions

Also solutions for hybrid plant (and hybrid controller)
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Hybrid controller: patchy control Lyapunov functions (CLF)

To cover the state space with a family of “local” control Lyapunov functions

To derive a hybrid control strategy
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Hybrid controller: “throw-and-catch”

Robust UGpAS guarantees
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Hybrid controller: supervisory control

Notion of supervisory control well-established in discrete-event systems.

Here, I refer to works initiated by A.S. Morse and his co-authors (J. Hespanha, D.
Liberzon, C. De Persis etc).

Consider
ẋ = f (x , θ, u)

where θ ∈ Rp is a vector of unknown parameters.

Objective: to asymptotically stabilize x = 0 (not necessarily to estimate θ).

→ traditional problem in adaptive control.

Difficult when f depends nonlinearly in θ

Lack of uniform stability properties a priori.
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Hybrid controller: supervisory control

• Suppose θ ∈ Θ, where Θ is known
bounded set

• Discretize Θ with N points

• Design N associated controllers

• Associate a state-observer to each
controller

• Selection criterion + apply the
considered control law

Robust stability guarantees (no persistency of excitation)

22/41 Romain Postoyan - CNRS



Hybrid controller: supervisory control

• Suppose θ ∈ Θ, where Θ is known
bounded set

• Discretize Θ with N points

• Design N associated controllers

• Associate a state-observer to each
controller

• Selection criterion + apply the
considered control law

Robust stability guarantees (no persistency of excitation)

22/41 Romain Postoyan - CNRS



Hybrid controller: supervisory control

• Suppose θ ∈ Θ, where Θ is known
bounded set

• Discretize Θ with N points

• Design N associated controllers

• Associate a state-observer to each
controller

• Selection criterion + apply the
considered control law

Robust stability guarantees (no persistency of excitation)

22/41 Romain Postoyan - CNRS



Hybrid controller: supervisory control

• Suppose θ ∈ Θ, where Θ is known
bounded set

• Discretize Θ with N points

• Design N associated controllers

• Associate a state-observer to each
controller

• Selection criterion + apply the
considered control law

Robust stability guarantees (no persistency of excitation)

22/41 Romain Postoyan - CNRS



Hybrid controller: supervisory control

• Suppose θ ∈ Θ, where Θ is known
bounded set

• Discretize Θ with N points

• Design N associated controllers

• Associate a state-observer to each
controller

• Selection criterion + apply the
considered control law

Robust stability guarantees (no persistency of excitation)

22/41 Romain Postoyan - CNRS



Hybrid controller: supervisory control

• Suppose θ ∈ Θ, where Θ is known
bounded set

• Discretize Θ with N points

• Design N associated controllers

• Associate a state-observer to each
controller

• Selection criterion + apply the
considered control law

Robust stability guarantees (no persistency of excitation)

22/41 Romain Postoyan - CNRS



Hybrid controller: supervisory control

• Suppose θ ∈ Θ, where Θ is known
bounded set

• Discretize Θ with N points

• Design N associated controllers

• Associate a state-observer to each
controller

• Selection criterion + apply the
considered control law

Robust stability guarantees (no persistency of excitation)

22/41 Romain Postoyan - CNRS



Overview

1 Introduction

2 Hybrid plant

3 Hybrid controller

4 Hybrid implementation

5 Discussions

6 Summary

23/41 Romain Postoyan - CNRS



Hybrid implementation: set-up
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Hybrid implementation: sampled-data control

Why to model it as a hybrid system? Why not to model everything in discrete-time?

• To take into account the inter-sampling behaviour

• To cope with varying sampling periods

τ̇ = 1 τ ∈ [0,Tmax], τ+ = 0 τ ∈ [ε,T ]

where 0 < ε ≤ T .

• Very useful for nonlinear systems for which discretization is tricky.

• Can be used to compute explicit bounds on the sampling period.

25/41 Romain Postoyan - CNRS



Hybrid implementation: sampled-data control

Why to model it as a hybrid system? Why not to model everything in discrete-time?

• To take into account the inter-sampling behaviour

• To cope with varying sampling periods

τ̇ = 1 τ ∈ [0,Tmax], τ+ = 0 τ ∈ [ε,T ]

where 0 < ε ≤ T .

• Very useful for nonlinear systems for which discretization is tricky.

• Can be used to compute explicit bounds on the sampling period.

25/41 Romain Postoyan - CNRS



Hybrid implementation: sampled-data control

Why to model it as a hybrid system? Why not to model everything in discrete-time?

• To take into account the inter-sampling behaviour

• To cope with varying sampling periods

τ̇ = 1 τ ∈ [0,Tmax], τ+ = 0 τ ∈ [ε,T ]

where 0 < ε ≤ T .

• Very useful for nonlinear systems for which discretization is tricky.

• Can be used to compute explicit bounds on the sampling period.

25/41 Romain Postoyan - CNRS



Hybrid implementation: sampled-data control

Why to model it as a hybrid system? Why not to model everything in discrete-time?

• To take into account the inter-sampling behaviour

• To cope with varying sampling periods

τ̇ = 1 τ ∈ [0,Tmax], τ+ = 0 τ ∈ [ε,T ]

where 0 < ε ≤ T .

• Very useful for nonlinear systems for which discretization is tricky.

• Can be used to compute explicit bounds on the sampling period.

25/41 Romain Postoyan - CNRS



Hybrid implementation: networked control systems
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Hybrid implementation: networked control systems

Network effects:

• Aperiodic data sampling,

• Scheduling protocols

• Quantization

ŷ = q(y), e.g. y(t) = 2.127, ŷ(t) = q(y(t)) = 2.1

• Packet loss,

• Time-varying delays.

All these phenomena can be modeled as a hybrid system using the formalism we saw.

Various results available in the literature:

• point stabilization,

• robust stabilization,

• tracking control,

• observer design.
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• Packet loss,
• Time-varying delays.

All these phenomena can be modeled as a hybrid system using the formalism we saw.

Various results available in the literature:
• point stabilization,
• robust stabilization,
• tracking control,
• observer design.

27/41 Romain Postoyan - CNRS



Hybrid implementation: networked control systems

Network effects:

• Aperiodic data sampling,

• Scheduling protocols

• Quantization
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Hybrid implementation: event-triggered control

Traditionally, transmissions depend on time-triggered clocks, like

τ̇ = 1 τ ∈ [0,Tmax], τ+ = 0 τ ∈ [ε,T ]

Alternative: to adapt transmissions to the state of the plant

→ to reduce transmissions over the network
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Hybrid implementation: event-triggered control

To transmit only when some criterion is positive, like

Γ(x , x̂) ≥ 0,

where

• Γ takes scalar values,

• x̂ is the sampled version of x

Typical example

Transmit when Γ(x(t), x(tj )) = |x(t)− x(tj )| ≥ c,

where c > 0.
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Hybrid implementation: event-triggered control

We derive
C = {(x , x̂) : Γ(x , x̂) ≤ 0} D = {(x , x̂) : Γ(x , x̂) ≥ 0}

Challenge: to define the controller and the triggering criterion Γ to ensure

• stability properties,

• to avoid Zeno phenomenon

• to ensure the existence of a strictly positive time between any two transmissions.
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Hybrid controller: symbolic control

Consider
ẋ = f (x , u) (NL)

Discretize in time and in space NL (abstraction)

Design of a control strategy

Application to NL

See Manuel’s lecture.
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Discussions

What about performance/robust properties?

What about optimal control?

What about tracking control or output regulation?

→ Not easy when the plant solution and the reference trajectory do not jump
simultaneously but some results exist

What about observer design?
(switched systems, networked control systems, sampled-data observers, supervisory
approach, uniting observers, etc.)
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Summary

• When control leads to hybrid system.

• Several scenarios and a sample of associated results
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Summary: some references

Switched systems

• D. Liberzon, Switching in Systems and Control, Springer, 2003.

Mechanical systems with impacts

• B. Brogliato, Impacts in mechanical systems: analysis and modelling, Springer
Science & Business Media, 2000.

• E.R. Westervelt, J.W. Grizzle, C. Chevallereau, J.H. Choi, B. Morris, Feedback
control of dynamic bipedal robot locomotion, CRC press, 2018.

• A.D. Ames, Human-inspired control of bipedal walking robots, IEEE Transactions
on Automatic Control, 2014.

Control Lyapunov functions for hybrid systems and backstepping

• C.G. Mayhew, R.G. Sanfelice, A.R. Teel, Synergistic Lyapunov functions and
backstepping hybrid feedbacks, ACC 2011.

• R.G. Sanfelice, Control Lyapunov functions and stabilizability of compact sets for
hybrid systems, CDC-ECC 2011.
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Summary: some references

Control of Brockett integrator

• J.P. Hespanha, A.S. Morse, Stabilization of nonholonomic integrators via
logic-based switching, Automatica, 1999.

Reset control

• C.Prieur, I. Queinnec, S. Tarbouriech, L. Zaccarian, Analysis and synthesis of reset
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