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Overview of the course

General Info

Lecturers: Manuel Mazo Jr and Romain Postoyan

Web site:
https://mmazojr.3me.tudelft.nl/teaching/disc_hs/

Lecture notes: on DISC course folder, linked on course website

Slides: see website

Homework: see website (also for deadlines)

Final grade: average of 3 homework assignments
+ bonus points (by reporting errors)
results will be communicated by end of October 2020

Email addresses:

m.mazo@tudelft.nl
romain.postoyan@univ-lorraine.fr
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Overview of the course

Contents

1 Introduction (June 22)

2 Models (June 22)

3 Dynamics & well-posedness (June 29)

4 Stability (June 29 & July 1)

5 Switched control (July 1)

6 Optimization-based control (July 6)

7 Model checking and timed automata (July 6)
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Motivating Hybrid Systems

Control systems meets computing

Cyber Physical
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Motivating Hybrid Systems

Switching dynamical regimes

Evolution of rigid bodies, impact dynamics (contact/no contact)

(Active) Electrical networks (switching, diodes)

Fermentation process (lag, growth, stationary, inactivation)

Saturation, hysteresis

Actuator and sensor failures

Human intervention in smooth systems

Switching between dynamical regimes → hybrid
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Motivating Hybrid Systems Examples

A classical example

Hybrid: combination of continuous and discrete dynamics

Temperature control system:

on

Ṫ = fon(T ,w)

off

Ṫ = foff (T ,w)

T > T

T < T

Manuel Mazo Jr. (TU Delft) Modeling & Control of Hybrid Systems DISC, 2020 9 / 71



Motivating Hybrid Systems Examples

Beer brewing
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holding vessel

wort separation

water

boiling whirlpool

cooling

airconditioning
maturation/

water
malt

mashing

packaging

filtration
fermentation
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Motivating Hybrid Systems Examples

Traffic control systems

7070

dynamic speed limits

ramp metering
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Motivating Hybrid Systems Examples

Traffic control systems

Intersection with traffic signals

4 modes, states: queue lengths

Automatic platooning

merging & splitting
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Motivating Hybrid Systems Examples

Networked Control Systems
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Motivating Hybrid Systems Examples

Challenges

Analysis — Verification of properties/specifications

Control — Synthesis for prescribed properties

Traditional approaches:

often heuristic & ad-hoc
focus exclusively on either continuous or discrete dynamics

→ structured approach necessary

Consider hybrid nature of systems (holistic view)

Combination of systems & control, computer science,
optimization, communications, mathematics, simulation...

Manuel Mazo Jr. (TU Delft) Modeling & Control of Hybrid Systems DISC, 2020 14 / 71



Hybrid automata
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Hybrid automata

Systems

Definition (System or Machine, Sontag)

A system or machine Σ = (T ,X ,U , φ) consists of:

A time set T ;

A nonempty set X called the state space of Σ;

A nonempty set U called the control-value or input-value space of Σ;

A map φ : Dφ → X called the transition map of Σ, which is defined
on a subset Dφ of
{(τ, σ, x , ω) | τ, σ ∈ T , τ ≤ σ, x ∈ X , ω : [τ, σ)→ U} such that the
non-triviality, restriction, semi-group and identity properties (see
[Son98] for exact descriptions) hold.

Example: ẋ(t) = f (x(t), u(t)), t: time, x : state, u: input

Son98 E.D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional
Systems. Springer, New York, 1998. Texts in applied Mathematics, vol. 6
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Hybrid automata

Generalized Transition Systems

Definition (Generalized Transition System)

A system is a sextuple (X ,X0,U, - ,Y ,H) consisting of:

a set of states X ;

a set of initial states X0 ⊆ X ;

a set of inputs U;

a transition relation - ⊆ X × U × X ;

a set of outputs Y ;

an output map H : X → Y .

Tab09 P. Tabuada. Verification and control of hybrid systems: a symbolic approach.
Springer Science & Business Media, 2009.
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Hybrid automata Classification

Classification of systems

Continuous-state / discrete-state / finite-state (X or X )

Continuous-time / discrete-time (T )

Time-driven / event-driven

time-driven → state changes as time progresses, i.e.,
continuously (for continuous-time), or
at every tick of a clock (for discrete-time)
event-driven → state changes due to occurrence of event:

start or end of an activity
aperiodic (occurrence times not necessarily equidistant)

Combinations ⇒“hybrid”
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Hybrid automata Models for time-driven systems

Models for time-driven systems

Continuous-time time-driven systems:

ẋ(t) = f (x(t), u(t))

y(t) = g(x(t), u(t))

Discrete-time time-driven systems:

x(k + 1) = f (x(k), u(k))

y(k) = g(x(k), u(k))
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Hybrid automata Models for event-driven systems

Models for event-driven systems

Definition (Automaton)

An Automaton is defined by the tuple Σ = (Q,Q0,U ,Fφ) with

Q: finite or countable set of discrete states

Q0 ⊆ Q: subset of initial states

U : finite or countable set of discrete inputs (“input alphabet”)

F ⊆ Q: subset of final (or accepting) states

φ : Q× U → P(Q): partial transition function.

where P(Q) is power set of Q (set of all subsets)

Finite automaton: Q and U finite.
Alternatively one can denote φ ⊆ Q× U ×Q.
Depending on context often Q0 and F are dropped.
P(X ), often also denoted 2X is the power set of X , i.e. the set of all
subsets of X .
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Hybrid automata Models for event-driven systems

Evolution of automaton

Given state q ∈ Q and discrete input symbol u ∈ U ,
transition function φ defines collection of next possible states:
φ(q, u) ⊆ Q

Accepting states are used on automata to model computation, e.g.
language acceptance.
Acceptance depends on the type of automaton, e.g. finite, Büchi,
Rabin,...

If each set of next states has 0 or 1 element:
→“deterministic” automaton

If some set of next states has more than 1 element:
→“non-deterministic” automaton
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Hybrid automata Models for event-driven systems

Deterministic automaton

qbusy

qidle

qdown

β

αγ δ

φ(qbusy, β) = {qdown} φ(qdown, α) = {qbusy}
φ(qbusy, γ) = {qidle} φ(qidle, δ) = {qdown}
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Hybrid automata Models for event-driven systems

Accepting automaton

q1start q2

0

0

1

Acceps strings of the form: 10, 110110, 1000

Does not accept: 100 or 1111

The accepted strings define a language, in this case: {((1∗(00)∗)∗0}
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Hybrid automata Models for event-driven systems

Non-deterministic automaton

q1 q2

α

β

α

φ(q1, α) = {q1, q2} φ(q2, β) = {q1}

→ unmodeled dynamics, e.g. environment (player)
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Hybrid automata Hybrid system

Hybrid system

ẋ1 = f1(x1, u)
y = g1(x1, u)

ẋ2 = f2(x1, u)
y = g2(x1, u)

ẋ3 ∈ F3(x1, u)
y = g3(x1, u)

System can be in one of several modes

In each mode: behavior described by system of
difference or differential equations

Mode switches due to occurrence of “events”
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Hybrid automata Hybrid system

Hybrid system

At switching time instant:
→ possible state reset or state dimension change

Mode transitions may be caused by

external control signal
internal control signal
dynamics of system itself (crossing of boundary in state space)
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Hybrid automata Hybrid system

Models for hybrid systems

timed or hybrid Petri nets

differential automata

hybrid automata

Brockett’s model

mixed logical dynamic models

real-time temporal logics

timed communicating sequential processes

switched bond graphs

predicate calculus

piecewise-affine models

. . .
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Hybrid automata Hybrid system

Analysis techniques

formal verification

computer simulation

analytic techniques (for special subclasses)

. . .

⇒ no general modeling & analysis framework

modeling power↔ decision power

+ computational complexity (NP-hard, undecidable)

⇒ special subclasses (Chapter 2)

hierarchical / modular approach
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Hybrid automata Computation theory

Decidability and complexity

Undecidable problems
→ no algorithm can solve the problem in general,

i.e., finite termination cannot be guaranteed

NP-complete and NP-hard problems
decision problem: solution is either “yes” or “no”
e.g., traveling salesman decision problem:

Given a network of cities, intercity distances, and a
number B, does there exist a tour with length 6 B?

search problem
e.g., traveling salesman problem:

Given a network of cities, intercity distances, what
is the shortest tour?
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Hybrid automata Computation theory

P and NP-complete decision problems

Time complexity function T (n): largest amount of time needed to
solve problem instance of size n (worst case!)

Polynomial time algorithm:

T (n) 6 |p(n)| for some polynomial p

→ class P: solvable in polynomial time on a deterministic computer

Nondeterministic computer:

guessing stage (tour)
checking stage (compute length of tour + compare it with B)

→ class NP: “nondeterministically polynomial ”

i.e., time complexity of checking stage is polynomial

N.B.: Computer here is used in the sense of a “Turing Machine”
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Hybrid automata Computation theory

P and NP-complete decision problems

Every problem in NP can be solved in exponential time: T (n) 6 2nk

Definition (NP-complete)

An NP problem X is NP-complete iff every NP problem Y can be reduced
to X in polynomial time.

NP-complete problems: “hardest” class in NP:

any NP-complete problem solvable in polynomial time
⇒ every problem in NP solvable in polynomial time

any problem in NP intractable
⇒ NP-complete problems also intractable
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Hybrid automata Computation theory

NP-hard problems

Definition (NP-hard)

A problem X is NP-hard, if there exist an NP-complete problem Y, such
that Y is reducible to X in polynomial time.

Remark: In this case X is not necessarily an NP problem.

Decision problem is NP-complete ⇒ search problem is NP-hard

NP-hard problems: at least as hard as NP-complete problems

NP-complete (decision problem)

→ solvable in polynomial time if and only if P = NP

NP-hard (search problem)

→ cannot be solved in polynomial time unless P = NP
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Hybrid automata Computation theory

Complexity map

Figure: https://commons.wikimedia.org/wiki/File:P_np_np-complete_np-hard.svg
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Hybrid automata Computation theory

Examples of NP-hard and undecidable problems

Consider simple hybrid system:

x(k + 1) =

{
A1x(k) if cTx(k) > 0

A2x(k) if cTx(k) < 0

→ deciding whether system is stable or not is NP-hard

Given two Petri nets, do they have the same reachability set?
→ undecidable
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Hybrid automata Hybrid automata

Hybrid automaton

Definition (Hybrid automaton)

A Hybrid automaton H is collection H = (Q,X , f , Init, Inv,E ,G ,R)
where

Q = {q1, . . . , qN} is finite set of discrete states or modes

X = Rn is set of continuous states

f : Q × X → X is a (collection of) vector field(s)

Init ⊆ Q × X is set of initial states

Inv : Q → P(X ) describes invariants

E ⊆ Q × Q is a set of edges or (discrete) transitions

G : E → P(X ) are guard conditions

R : E → P(X × X ) is reset map
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Hybrid automata Hybrid automata

Hybrid automaton

Hybrid automaton H = (Q,X , f , Init, Inv,E ,G ,R)

Hybrid state: (q, x)

Evolution of continuous state in mode q: ẋ = f (q, x)

Invariant Inv: describes conditions that continuous state has to
satisfy in given mode

Guard G : specifies subset of state space where certain transition is
enabled

Reset map R: specifies how new continuous states are related to
previous continuous states
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Hybrid automata Hybrid automata

Hybrid automaton
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Hybrid automata Hybrid automata

Evolution of hybrid automaton

Initial hybrid state (q0, x0) ∈ Init

Continuous state x evolves according to

ẋ = f (q0, x) with x(0) = x0

discrete state q remains constant: q(t) = q0

Continuous evolution can go on as long as x ∈ Inv(q0)

If at some point state x reaches guard G (q0, q1), then

transition q0 → q1 is enabled
discrete state may change to q1, continuous state then jumps from
current value x− to new value x+ with (x−, x+) ∈ R(q0, q1)

Next, continuous evolution resumes and whole process is
repeated
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Examples of hybrid systems

Examples of hybrid systems

1 Hysteresis

2 Manual transmission

3 Water-level monitor

4 Supervisor

5 Two-carts system

6 Boost converter
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Examples of hybrid systems Hysteresis

Control system with Hysteresis

ẋ = H(x) + u
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Examples of hybrid systems Manual transmission

Manual transmission

Simple model of manual transmission

ẋ1 = x2

ẋ2 =
−a x2 + u

1 + v

with v : gear shift position v ∈ {1, 2, 3, 4}
u: acceleration

a: parameter

→ hybrid system with four modes, 2-dimensional continuous state,

controlled transitions (switchings), and no resets
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Examples of hybrid systems Water-level monitor

Water-level monitor

Variables:

y(t): water level, continuous
x(t): time elapsed since last signal was sent by monitor, continuous
P(t): status of pump, ∈ {on, off}
S(t): nature of signal last sent by monitor, ∈ {on, off}

Dynamics of system:

water level rises 1 unit per second when pump is on and
falls 2 units per second when pump is off
when water level rises to 10 units, monitor sends switch-off signal; after
delay of 2 seconds pump turns off
when water level falls to 5 units, monitor sends switch-on signal; after
delay of 2 seconds pump switches on

Manuel Mazo Jr. (TU Delft) Modeling & Control of Hybrid Systems DISC, 2020 43 / 71



Examples of hybrid systems Water-level monitor

Water-level monitor

y : water level
x : time since

last signal
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Examples of hybrid systems Two-carts system

Two-carts system

Two carts connected by spring

Left cart attached to wall by spring;
motion constrained by completely inelastic stop
Stop is placed at equilibrium position of left cart

Masses of carts and spring constants = 1
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Examples of hybrid systems Two-carts system

Two-carts system

x1, x2: deviations of left and right cart from equilibrium position

x3, x4: velocities of left and right cart

z : reaction force exerted by stop

Evolution: ẋ1(t) = x3(t)

ẋ2(t) = x4(t)

ẋ3(t) = −2x1(t) + x2(t) + z(t)

ẋ4(t) = x1(t)− x2(t)
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Examples of hybrid systems Two-carts system

Two-carts system

To model stop:

Define w(t) = x1(t)

w(t) ≥ 0 (since w is position of left cart w.r.t. stop)

Force exerted by stop can act only in positive direction → z(t) ≥ 0

If left cart not at stop (w(t) > 0), reaction force vanishes: z(t) = 0

If z(t) > 0 then cart must necessarily be at the stop: w(t) = 0

0 ≤ w(t)⊥z(t) ≥ 0
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Examples of hybrid systems Two-carts system

Two-carts system

System can be represented by two modes (stop active or not)

z = 0 unconstrained constrained w = 0

ẋ1(t) = x3(t) ẋ1(t) = x3(t)

ẋ2(t) = x4(t) ẋ2(t) = x4(t)

ẋ3(t) = −2x1(t) + x2(t) ẋ3(t) = −2x1(t) + x2(t) + z(t)

ẋ4(t) = x1(t)− x2(t) ẋ4(t) = x1(t)− x2(t)

z(t) = 0 w(t) = x1(t) = 0

ODE (in state) DAE (as z is not explicit)

System stays in mode as long as

unconstrained constrained

z(t) = 0, w(t) > 0 w(t) = 0, z(t) > 0
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Examples of hybrid systems Two-carts system

Mode transitions for two-carts system

Unconstrained → constrained
Suppose x(τ) = (0+,−1,−1, 0)T → w(t) > 0 tends to be violated
Left cart hits stop and stays there. Velocity of left cart is reduced to
zero instantaneously (purely inelastic collision)

Constrained → unconstrained
Suppose x(τ) = (0, 0, 0, 1)T → z(t) > 0 tends to be violated
Right cart is moving to right of its equilibrium position, so spring
between carts pulls left cart away from stop
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Examples of hybrid systems Two-carts system

Mode transitions for two-carts system

Unconstrained → unconstrained with re-initialization according
to constrained mode
Consider x(τ) = (0+, 1,−1, 0)T → w(t) > 0 tends to be violated
At impact, velocity of left cart is reduced to 0, i.e., state reset to
(0, 1, 0, 0)T

Right cart is at right of its equilibrium position, pulls left cart away
from stop → smooth continuation in unconstrained mode

So: After the reset, no smooth continuation is possible in constrained
mode → second mode change, back to unconstrained mode
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Examples of hybrid systems Supervisor model

Supervisor model

Controller is input-output automaton: q = ν(q, i)
o = η(q, i)
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Examples of hybrid systems Supervisor model

Boost converter

Presence of switch and diode introduces hybrid dynamics

4 modes:
(vS = 0, vD = 0), (vS = 0, iD = 0), (iS = 0, vD = 0), (iS = 0, iD = 0)
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Examples of hybrid systems Supervisor model

Boost converter: transitions

transition guard reset

mode 1→mode 2 S = 1 and q ≥ 0

mode 1→mode 3 φ = 0 and q > CE

mode 199Kmode 3 φ < 0 φ+ = 0

mode 1→mode 4 S = 1 and q ≤ 0 q+ = 0

mode 2→mode 1 S = 0 and φ ≥ 0

mode 2→mode 3 S = 0 and φ ≤ 0 φ+ = 0

mode 2→mode 4 q = 0

mode 299Kmode 4 q < 0 q+ = 0

mode 3→mode 1 q = CE

mode 3→mode 2 S = 1 and q ≥ 0

mode 3→mode 4 S = 1 and q ≤ 0 q+ = 0

mode 4→mode 1 S = 0 and φ ≥ 0

mode 4→mode 3 S = 0 and φ ≤ 0 φ+ = 0

mode 4→mode 4 q < 0 q+ = 0
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Examples of hybrid systems Supervisor model

Boost converter: Hybrid automaton
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Examples of hybrid systems Supervisor model

Boost converter: Linear Complementarity model

Hybrid automaton model is very involved

Alternatively, one may use the more compact model

q̇ = − 1

RC
q + iD

φ̇ = vS + E

−vD =
1

C
q + vS

iS = 1
Lφ− iD

0 ≤ iD ⊥ −vD ≥ 0

vS ⊥ iS

→ also complementarity relation (as in two-carts system)
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Examples with Zeno behavior
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Examples with Zeno behavior

Zeno behavior

Zeno behavior : infinitely many mode switches in finite time
interval

Examples

1 bouncing ball
2 reversed Filippov’s system
3 two-tank system
4 three-balls example
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Examples with Zeno behavior Bouncing Ball

Bouncing ball

Dynamics: ẍ = −g subject to x ≥ 0 (x(t): height)

Newton’s restitution rule (0 < e < 1):

ẋ(τ+) = −eẋ(τ−) when x(τ−) = 0, ẋ(τ−) < 0

Assuming x(0) = 0, ẋ(0) > 0, event times are related through

τi+1 = τi +
2e i ẋ(0)

g

Sequence has finite limit τ∗ = 2ẋ(0)
g−ge <∞ (geometric series)

Physical interpretation: ball is at rest within finite time span, but
after infinitely many bounces → Zeno behavior

In this case: infinite number of state re-initializations, set of event
times contains right-accumulation point
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Examples with Zeno behavior Bouncing Ball

Bouncing ball

0 5 10
0

2

4

6

8

10

t

x
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Examples with Zeno behavior Reversed Filippov’s example

Reversed Filippov’s example

Dynamics:

ẋ1 = −sgn(x1) + 2sgn(x2)

ẋ2 = −2sgn(x1)− sgn(x2),

with 
sgn(x) = 1 if x > 0

sgn(x) = −1 if x < 0

sgn(x) ∈ [−1, 1] when x = 0

Solutions system are spiraling towards origin, which is an equilibrium
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Examples with Zeno behavior Reversed Filippov’s example

Reversed Filippov’s example: Finite time convergence
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Since
d

dt
(|x1(t)|+ |x2(t)|) = −2, solutions reach origin in finite time

Solutions go through infinite number of mode transitions (relay
switches) → Zeno behavior
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Examples with Zeno behavior Reversed Filippov’s example

Reversed Filippov’s example: Finite time convergence

Dynamics:

ẋ1 = −sgn(x1) + 2sgn(x2)

ẋ2 = −2sgn(x1)− sgn(x2),

“Derivative” of absolute value function:
d

dx
|x | = sgn(x)

So

d

dt
(|x1(t)|+ |x2(t)|)

= ẋ1sgn(x1) + ẋ2sgn(x2)

= −sgn2(x1) + 2sgn(x2)sgn(x1)− 2sgn(x1)sgn(x2)− sgn2(x2)

= −1− 1

= −2
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Examples with Zeno behavior Two-tank system

Two-tank system

Two tanks (xi : volume of water in tank)

Tanks are leaking at constant rate vi > 0

Water is added at constant rate w through hose, which at any point
in time is dedicated to either one tank or the other

Objective: keep water volumes above r1 and r2
Controller that switches inflow to tank 1 whenever x1 ≤ r1 and to
tank 2 whenever x2 ≤ r2
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Examples with Zeno behavior Two-tank system

Description of two-tank system as hybrid automaton

Two modes: filling tank 1 (mode q1) or tank 2 (mode q2)

Evolution of continuous state:{
ẋ1 = w − v1

ẋ2 = −v2

in mode q1

{
ẋ1 = −v1

ẋ2 = w − v2

in mode q2

Init = {q1, q2} × {(x1, x2) | x1 ≥ r1 and x2 ≥ r2}
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Examples with Zeno behavior Two-tank system

Description of two-tank system as hybrid automaton (cont.)

Invariants: Inv(q1) = {x ∈ R2 | x2 ≥ r2}
Inv(q2) = {x ∈ R2 | x1 ≥ r1}

Guards: G (q1, q2) = {x ∈ R2 | x2 ≤ r2}
G (q2, q1) = {x ∈ R2 | x1 ≤ r1}

No resets:

R(q1, q2) = R(q2, q1) = {(x−, x+) | x−, x+ ∈ R2 and x− = x+}
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Examples with Zeno behavior Two-tank system

Description of two-tank system as hybrid automaton (cont.)
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Examples with Zeno behavior Two-tank system

Two-tank system and Zeno behavior

Assume total outflow v1 + v2 > w

Control objective cannot be met and tanks will empty in finite time

Infinitely many switchings in finite time → Zeno behavior
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Examples with Zeno behavior Three-balls example

Three-balls example: model

System consisting of three balls

Inelastic impacts modeled by successions of simple impacts

Suppose unit masses, touching at time 0, and
v1(0) = 1, v2(0) = v3(0) = 0

We model all impacts separately →
first, inelastic collision between balls 1 and 2, resulting in
v1(0+) = v2(0+) = 0.5, v3(0+) = 0
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Examples with Zeno behavior Three-balls example

Three balls example: Zeno

- next, ball 2 hits ball 3, resulting in v1(0++) = 1
2 ,

v2(0++) = v3(0++) = 1
4

- next, ball 1 hits ball 2 again, etc.

→ sequence of resets: v1 : 1 1
2
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v2 : 0 1
2

1
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3
8
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32 . . .

v3 : 0 0 1
4

1
4

5
16

5
16 . . .

converges to ( 1
3 ,

1
3 ,

1
3 )T

Afterwards, smooth continuation is possible with constant and equal
velocity for all balls

Infinite number of events (resets) at one time instant, sometimes
called live-lock → another special case of Zeno behavior
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Summary

Outline

1 Overview of the course

2 Motivating Hybrid Systems

3 Hybrid automata

4 Examples of hybrid systems

5 Examples with Zeno behavior

6 Summary
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Summary

Summary

Definition and examples of hybrid systems

Hybrid automaton

Complexity issues: modeling power vs decision power

Zeno behavior
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