Lecture 3: Solution Concept and Well-posedness of Hybrid Systems

Romain Postoyan CNRS, CRAN, Université de Lorraine - Nancy, France

romain.postoyan@univ-lorraine.fr

◆□> ◆□> ◆三> ◆三> 三三 のへで

Lecture 3: Solution Concept and Well-posedness of Hybrid Systems

Lecture 4: Stability and Robustness of Hybrid Systems

Lecture 5: Hybrid Systems and Control

June, 29 and July, 1

1 assignment (to be double-checked) for September, 23

A D F A P F A P F A

In the next two (even three) lectures, we concentrate on hybrid systems modeled as in [Goebel et al., 2012], i.e.

$$\begin{cases} \frac{d}{dt}x = \dot{x} \in F(x) & x \in C\\ x(t^+) = x^+ \in G(x) & x \in D, \end{cases}$$
(H)

- $C \subseteq \mathbb{R}^n$ is the flow set
- $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is the flow map
- $D \subseteq \mathbb{R}^n$ is the jump set
- $G : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is the jump map

In the next two (even three) lectures, we concentrate on hybrid systems modeled as in [Goebel et al., 2012], i.e.

$$\begin{cases} \frac{d}{dt}x = \dot{x} \in F(x) & x \in C\\ x(t^+) = x^+ \in G(x) & x \in D, \end{cases}$$
(H)

- $C \subseteq \mathbb{R}^n$ is the flow set
- $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is the flow map
- $D \subseteq \mathbb{R}^n$ is the jump set
- $G: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is the jump map

In the next two (even three) lectures, we concentrate on hybrid systems modeled as in [Goebel et al., 2012], i.e.

$$\begin{cases} \frac{d}{dt}x = \dot{x} \in F(x) & x \in C\\ x(t^+) = x^+ \in G(x) & x \in D, \end{cases}$$
(H)

- $C \subseteq \mathbb{R}^n$ is the flow set
- $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is the flow map
- $D \subseteq \mathbb{R}^n$ is the **jump set**
- $G : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is the jump map

In the next two (even three) lectures, we concentrate on hybrid systems modeled as in [Goebel et al., 2012], i.e.

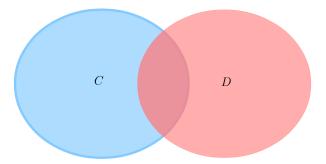
$$\begin{cases} \frac{d}{dt}x = \dot{x} \in F(x) & x \in C\\ x(t^+) = x^+ \in G(x) & x \in D, \end{cases}$$
(H)

- $C \subseteq \mathbb{R}^n$ is the flow set
- $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is the flow map
- $D \subseteq \mathbb{R}^n$ is the jump set
- $G : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is the jump map

Modeling framework: main idea

 (\mathcal{H})

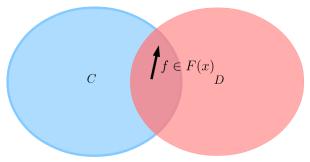
 $\dot{x} \in F(x)$ $x \in C$ $x^+ \in G(x)$ $x \in D$.



Modeling framework: main idea

 (\mathcal{H})

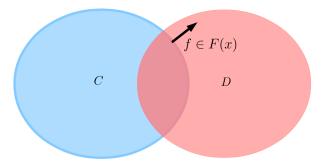
 $\dot{x} \in F(x)$ $x \in C$ $x^+ \in G(x)$ $x \in D$.



Modeling framework: main idea

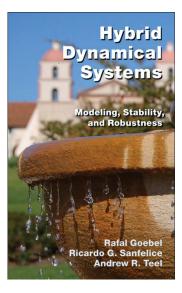
$$(\mathcal{H})$$

 $\dot{x} \in F(x)$ $x \in C$ $x^+ \in G(x)$ $x \in D$.



Modeling framework: the book

R. Goebel, R. Sanfelice and A. Teel, *Hybrid Dynamical Systems: Modeling, Stability and Robustness*, Princeton University Press, 2012.



$$\begin{cases} \dot{x} \in F(x) & x \in C \\ x^+ \in G(x) & x \in D, \end{cases}$$
(H)

- Why "∈" and not "="?
- Why no external inputs?

If the input is a feedback, i.e. u = K(x), we obtain \mathcal{H} .

If the input is exogenous, things are a bit more involved... but there are results in the literature

• Why no time-dependency, i.e. $\dot{x} \in F(t,x)$ or $x^+ \in G(k,x)$?

< D > < A > < B > <</p>

$$\begin{cases} \dot{x} \in F(x) & x \in C \\ x^+ \in G(x) & x \in D, \end{cases}$$
(H)

- Why "∈" and not "="?
- Why no external inputs?

If the input is a feedback, i.e. u = K(x), we obtain \mathcal{H} . If the input is exogenous, things are a bit more involved... but there are results in the literature

• Why no time-dependency, i.e. $\dot{x} \in F(t,x)$ or $x^+ \in G(k,x)$?

4 A >

$$\begin{cases} \dot{x} \in F(x) & x \in C \\ x^+ \in G(x) & x \in D, \end{cases}$$
(H)

- Why "∈" and not "="?
- Why no external inputs?

If the input is a feedback, i.e. u = K(x), we obtain \mathcal{H} . If the input is exogenous, things are a bit more involved... but there are results in the literature

• Why no time-dependency, i.e. $\dot{x} \in F(t,x)$ or $x^+ \in G(k,x)$?

$$\begin{cases} \dot{x} \in F(x) & x \in C \\ x^+ \in G(x) & x \in D, \end{cases}$$
(H)

- Why "∈" and not "="?
- Why no external inputs?

If the input is a feedback, i.e. u = K(x), we obtain \mathcal{H} . If the input is exogenous, things are a bit more involved... but there are results in the literature

Why no time-dependency, i.e. ẋ ∈ F(t, x) or x⁺ ∈ G(k, x)?
 We can always extend the state as z = (x, t) so that

$$\begin{split} \dot{z} &= \begin{pmatrix} \dot{x} \\ \dot{t} \end{pmatrix} \in \begin{pmatrix} F(t,x) \\ 1 \end{pmatrix} = \widetilde{F}(z) \\ z^{+} &= \begin{pmatrix} x^{+} \\ t^{+} \end{pmatrix} \in \begin{pmatrix} G(x) \\ t \end{pmatrix} = \widetilde{G}(z) \end{split}$$

$$\begin{cases} \dot{x} \in F(x) & x \in C \\ x^+ \in G(x) & x \in D, \end{cases}$$
(H)

- Why "∈" and not "="?
- Why no external inputs?

If the input is a feedback, i.e. u = K(x), we obtain \mathcal{H} . If the input is exogenous, things are a bit more involved... but there are results in the literature

Why no time-dependency, i.e. ẋ ∈ F(t, x) or x⁺ ∈ G(k, x)?
 We can always extend the state as z = (x, k) so that

$$\begin{split} \dot{z} &= \begin{pmatrix} \dot{x} \\ \dot{k} \end{pmatrix} \in \begin{pmatrix} F(x) \\ 0 \end{pmatrix} = \widetilde{F}(z) \\ z^{+} &= \begin{pmatrix} x^{+} \\ k^{+} \end{pmatrix} \in \begin{pmatrix} G(k,x) \\ k+1 \end{pmatrix} = \widetilde{G}(z) \end{split}$$

Recall

$$\dot{x} \in F(x) \quad x \in C, \qquad x^+ \in G(x) \quad x \in D,$$
 (H)

- What do we mean by a solution?
- Can new phenomena arise with H?
- When do we know whether a solution exists?
- Can we say something about uniqueness of solutions? Is it really important?
- What do we mean by a well-posed hybrid systems?

Recall

$$\dot{x} \in F(x) \quad x \in C, \qquad x^+ \in G(x) \quad x \in D,$$
 (H)

- What do we mean by a solution?
- Can new phenomena arise with \mathcal{H} ?
- When do we know whether a solution exists?
- Can we say something about uniqueness of solutions? Is it really important?
- What do we mean by a well-posed hybrid systems?

Recall

$$\dot{x} \in F(x) \quad x \in C, \qquad x^+ \in G(x) \quad x \in D,$$
 (H)

- What do we mean by a solution?
- Can new phenomena arise with \mathcal{H} ?
- When do we know whether a solution exists?
- Can we say something about uniqueness of solutions? Is it really important?
- What do we mean by a well-posed hybrid systems?

Recall

$$\dot{x} \in F(x) \quad x \in C, \qquad x^+ \in G(x) \quad x \in D,$$
 (H)

- What do we mean by a solution?
- Can new phenomena arise with \mathcal{H} ?
- When do we know whether a solution exists?
- Can we say something about uniqueness of solutions? Is it really important?
- What do we mean by a well-posed hybrid systems?

Recall

$$\dot{x} \in F(x) \quad x \in C, \qquad x^+ \in G(x) \quad x \in D,$$
 (H)

- What do we mean by a solution?
- Can new phenomena arise with \mathcal{H} ?
- When do we know whether a solution exists?
- Can we say something about uniqueness of solutions? Is it really important?
- What do we mean by a well-posed hybrid systems?

Overview

1 Modeling framework

- 2 Continuous- and discrete-time systems
- **3** New phenomena
- **4** The solution concept
- **5** Well-posed hybrid systems

6 Summary

Overview

1 Modeling framework

2 Continuous- and discrete-time systems

8 New phenomena

4 The solution concept

5 Well-posed hybrid systems

6 Summary

Let us go back to the basics and consider the linear time-invariant system

$$\dot{x} = Ax,$$
 (LIN)

where $A \in \mathbb{R}^{n \times n}$.

Given any initial condition x_0 , the corresponding solution to LIN is given by, for any $t \ge 0$,

$$x(t)=e^{At}x_0,$$

where
$$e^{At} = \mathbb{I} + At + A^2 \frac{t^2}{2!} + \dots$$
 is an exponential matrix.

We naturally want to call x a solution as $\dot{x}(t) = Ax(t)$ for all $t \ge 0$.

Let us go back to the basics and consider the linear time-invariant system

$$\dot{x} = Ax,$$
 (LIN)

where $A \in \mathbb{R}^{n \times n}$.

Given any initial condition x_0 , the corresponding solution to LIN is given by, for any $t \ge 0$,

$$x(t)=e^{At}x_0,$$

where
$$e^{At} = \mathbb{I} + At + A^2 \frac{t^2}{2!} + \dots$$
 is an exponential matrix.

We naturally want to call x a solution as $\dot{x}(t) = Ax(t)$ for all $t \ge 0$.

Let us go back to the basics and consider the linear time-invariant system

$$\dot{x} = Ax,$$
 (LIN)

where $A \in \mathbb{R}^{n \times n}$.

Given any initial condition x_0 , the corresponding solution to LIN is given by, for any $t \ge 0$,

$$x(t)=e^{At}x_0,$$

where
$$e^{At} = \mathbb{I} + At + A^2 \frac{t^2}{2!} + \dots$$
 is an exponential matrix.

We naturally want to call x a solution as $\dot{x}(t) = Ax(t)$ for all $t \ge 0$.

Let us go back to the basics and consider the linear time-invariant system

$$\dot{x} = Ax,$$
 (LIN)

イロン イヨン イヨン イ

where $A \in \mathbb{R}^{n \times n}$.

Given any initial condition x_0 , the corresponding solution to LIN is given by, for any $t \ge 0$,

$$x(t)=e^{At}x_0,$$

where
$$e^{At} = \mathbb{I} + At + A^2 \frac{t^2}{2!} + \dots$$
 is an exponential matrix.

We naturally want to call x a solution as $\dot{x}(t) = Ax(t)$ for all $t \ge 0$.

Consider

$$\dot{x} = f(x),$$
 (NL)

where $f : \mathbb{R}^n \to \mathbb{R}^n$.

What is a solution to NL?

We may be tempted to call a solution any function $x: [0,\infty) \to \mathbb{R}^n$ such that, for any $t \in [0,\infty)$,

$$x(t) = x(0) + \int_0^t f(x(\tau)) d\tau$$

Differential equations: the nonlinear case Consider

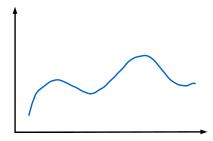
$$\dot{x} = f(x),$$
 (NL)

where $f : \mathbb{R}^n \to \mathbb{R}^n$.

What is a solution to NL?

We may be tempted to call a solution any function $x : [0, \infty) \to \mathbb{R}^n$ such that, for any $t \in [0, \infty)$,

$$x(t) = x(0) + \int_0^t f(x(\tau)) d\tau$$



Differential equations: the nonlinear case Consider

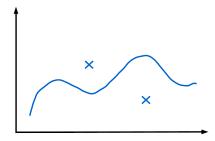
$$\dot{x} = f(x),$$
 (NL)

where $f : \mathbb{R}^n \to \mathbb{R}^n$.

What is a solution to NL?

We may be tempted to call a solution any function $x : [0, \infty) \to \mathbb{R}^n$ such that, for any $t \in [0, \infty)$,

$$x(t) = x(0) + \int_0^t f(x(\tau)) d\tau$$



Recall

$$\dot{x} = f(x), \tag{NL}$$

where $f : \mathbb{R}^n \to \mathbb{R}^n$.

Definition

Given a time-interval [0, T) with $T \in (0, \infty]$ and an initial value x_0 , we say that $x : [0, T) \to \mathbb{R}^n$ is a solution to NL on [0, T) initialized at $x_0 \in \mathbb{R}^n$ if it is continuous, differentiable and satisfies:

- $x(0) = x_0$
- $\dot{x}(t) = f(x(t))$ for all $t \in (0, T)$

Sufficient conditions for the existence of solutions: *f* continuous.

Remark: We consider solution on [0, T), the definition can be straightforwardly adapted to [a, b) with $-\infty < a \le b \le \infty$.

イロト イヨト イヨト イヨ

Recall

$$\dot{x} = f(x), \tag{NL}$$

where $f : \mathbb{R}^n \to \mathbb{R}^n$.

Definition

Given a time-interval [0, T) with $T \in (0, \infty]$ and an initial value x_0 , we say that $x : [0, T) \to \mathbb{R}^n$ is a solution to NL on [0, T) initialized at $x_0 \in \mathbb{R}^n$ if it is continuous, differentiable and satisfies:

- $x(0) = x_0$
- $\dot{x}(t) = f(x(t))$ for all $t \in (0, T)$

Sufficient conditions for the existence of solutions: f continuous.

Remark: We consider solution on [0, T), the definition can be straightforwardly adapted to [a, b) with $-\infty < a \le b \le \infty$.

The equation $\dot{x} = f(x)$ does not always have a solution.

Consider

$$\dot{x} = x^2, x_0 > 0$$

We can solve this equation and obtain

$$x(t) = \frac{x_0}{1-tx_0}.$$

We note that $x(t) \to \infty$ as $t \to \frac{1}{x_0}$: **explosion in finite-time**. The solution is only defined on $[0, \frac{1}{x_0})$.

Sufficient conditions to avoid this¹:

- f globally Lipschitz, i.e. there exists $L \ge 0$ such that $|f(x) f(y)| \le L|x y|$ for all $(x, y) \in \mathbb{R}^n$.
- OR if a solution is guaranteed to remain in a bounded set on its domain of existence, say [0, *T*), then this solution is defined (actually, can be extended) for all t ≥ 0, i.e. *T* = ∞

¹See [Khalil, 2002]

The equation $\dot{x} = f(x)$ does not always have a solution.

Consider

$$\dot{x} = x^2, x_0 > 0$$

We can solve this equation and obtain

$$\kappa(t) = \frac{x_0}{1-tx_0}.$$

We note that $x(t) \to \infty$ as $t \to \frac{1}{x_0}$: **explosion in finite-time**. The solution is only defined on $[0, \frac{1}{x_0})$.

Sufficient conditions to avoid this¹:

- f globally Lipschitz, i.e. there exists $L \ge 0$ such that $|f(x) f(y)| \le L|x y|$ for all $(x, y) \in \mathbb{R}^n$.
- OR if a solution is guaranteed to remain in a bounded set on its domain of existence, say [0, *T*), then this solution is defined (actually, can be extended) for all t ≥ 0, i.e. *T* = ∞

¹See [Khalil, 2002]

The equation $\dot{x} = f(x)$ does not always have a solution.

Consider

$$\dot{x} = x^2, x_0 > 0$$

We can solve this equation and obtain

$$x(t) = \frac{x_0}{1-tx_0}.$$

We note that $x(t) \to \infty$ as $t \to \frac{1}{x_0}$: **explosion in finite-time.** The solution is only defined on $[0, \frac{1}{x_0})$.

Sufficient conditions to avoid this¹:

- f globally Lipschitz, i.e. there exists $L \ge 0$ such that $|f(x) f(y)| \le L|x y|$ for all $(x, y) \in \mathbb{R}^n$.
- OR if a solution is guaranteed to remain in a bounded set on its domain of existence, say [0, *T*), then this solution is defined (actually, can be extended) for all t ≥ 0, i.e. *T* = ∞

¹See [Khalil, 2002]

The equation $\dot{x} = f(x)$ does not always have a solution.

Consider

$$\dot{x} = x^2, x_0 > 0$$

We can solve this equation and obtain

$$x(t) = \frac{x_0}{1-tx_0}.$$

We note that $x(t) \to \infty$ as $t \to \frac{1}{x_0}$: explosion in finite-time. The solution is only defined on $[0, \frac{1}{x_0})$.

Sufficient conditions to avoid this¹:

- f globally Lipschitz, i.e. there exists $L \ge 0$ such that $|f(x) f(y)| \le L|x y|$ for all $(x, y) \in \mathbb{R}^n$.
- OR if a solution is guaranteed to remain in a bounded set on its domain of existence, say [0, *T*), then this solution is defined (actually, can be extended) for all t ≥ 0, i.e. *T* = ∞

(日)

¹See [Khalil, 2002]

The equation $\dot{x} = f(x)$ does not always have a solution.

Consider

$$\dot{x} = x^2, x_0 > 0$$

We can solve this equation and obtain

$$x(t) = \frac{x_0}{1-tx_0}.$$

We note that $x(t) \to \infty$ as $t \to \frac{1}{x_0}$: explosion in finite-time. The solution is only defined on $[0, \frac{1}{x_0})$.

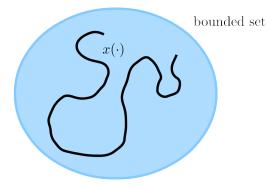
Sufficient conditions to avoid this¹:

- f globally Lipschitz, i.e. there exists $L \ge 0$ such that $|f(x) f(y)| \le L|x y|$ for all $(x, y) \in \mathbb{R}^n$.
- OR if a solution is guaranteed to remain in a bounded set on its domain of existence, say [0, *T*), then this solution is defined (actually, can be extended) for all t ≥ 0, i.e. *T* = ∞

(日)

¹See [Khalil, 2002]

Differential equations: the nonlinear case



Differential equations: non-unique solutions

Solutions, when they exist, are not always unique

Consider

$$\dot{x} = x^{1/3}$$
 with $x(0) = 0$

There are two solutions imes(t)=0 and $imes(t)=\left(rac{2t}{3}
ight)^2$.

Sufficient conditions for uniqueness²:

- f is locally Lipschitz, i.e. for any bounded set $B \subseteq \mathbb{R}^n$, there exists $L(B) \ge 0$ such that $|f(x) f(y)| \le L(B)|x y|$ for all $(x, y) \in B^2$
- *f* is continuously differentiable, which implies *f* is locally Lipschitz (by application of the mean value theorem).

< < >> < <</>

²See [Khalil, 2002]

Differential equations: non-unique solutions

Solutions, when they exist, are not always unique

Consider

Т

$$\dot{x}=x^{1/3}$$
 with $x(0)=0$
here are two solutions $x(t)=0$ and $x(t)=\left(rac{2t}{3}
ight)^{rac{3}{2}}.$

Sufficient conditions for uniqueness²:

- f is locally Lipschitz, i.e. for any bounded set $B \subseteq \mathbb{R}^n$, there exists $L(B) \ge 0$ such that $|f(x) f(y)| \le L(B)|x y|$ for all $(x, y) \in B^2$
- *f* is continuously differentiable, which implies *f* is locally Lipschitz (by application of the mean value theorem).

< < >> < <</>

²See [Khalil, 2002]

Differential equations: non-unique solutions

Solutions, when they exist, are not always unique

Consider

$$\dot{x}=x^{1/3}$$
 with $x(0)=0$
There are two solutions $x(t)=0$ and $x(t)=\left(rac{2t}{3}
ight)^{rac{3}{2}}.$

Sufficient conditions for uniqueness²:

- f is locally Lipschitz, i.e. for any bounded set $B \subseteq \mathbb{R}^n$, there exists $L(B) \ge 0$ such that $|f(x) f(y)| \le L(B)|x y|$ for all $(x, y) \in B^2$
- *f* is continuously differentiable, which implies *f* is locally Lipschitz (by application of the mean value theorem).

²See [Khalil, 2002]

Differential equations

We are going to face these phenomena when dealing with hybrid systems

< < >> < <</>

Differential inclusions: a piecewise linear example

Consider

$$\dot{x} = f(x),$$
 (NL-disc)

What happens when f is discontinuous?

Differential inclusions: a piecewise linear example

0 0.

Consider

$$\dot{x} = f(x),$$
 (NL-disc)

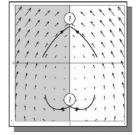
What happens when f is discontinuous?

Consider the piecewise linear system

$$\dot{x} = \begin{cases} A_1 x, & \text{when } x_1 < \\ A_2 x, & \text{when } x_1 > \end{cases}$$

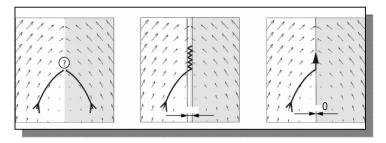
$$\text{where } A_1 = \begin{pmatrix} -2 & 2 \\ -4 & 1 \end{pmatrix} \text{ and }$$

$$A_2 = \begin{pmatrix} -2 & -2 \\ 4 & 1 \end{pmatrix}$$



(Courtesy from Maurice Heemels)

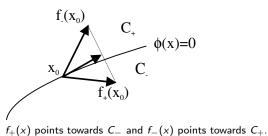
Differential inclusions: a piecewise linear example



(Courtesy from Maurice Heemels)

Differential inclusions: sliding mode

More generally



 $r_+(x)$ points towards c_- and $r_-(x)$ points towards

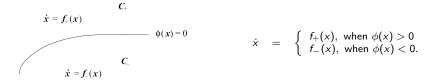
How should we define the solution?

Filippov convexication: when $\phi(x) = 0$,

$$\dot{x} = \lambda f_+(x) + (1-\lambda)f_-(x)$$
 with $\lambda \in [0,1)$

 \rightarrow "third mode arises"

Differential inclusions: sliding mode



- x in the interior of C₋ or C₊: just flow!
- $f_{-}(x)$ and $f_{+}(x)$ point in the same direction: just flow!
- $f_+(x)$ points towards C_+ and $f_-(x)$ points towards C_- : at least two solutions.
- *f*₊(*x*) points towards *C*_− and *f*_−(*x*) points towards *C*₊: sliding mode → convexification.

Differential inclusions: sliding mode

As a result

$$\dot{x} = \begin{cases} f_{+}(x), \text{ when } \phi(x) > 0\\ f_{-}(x), \text{ when } \phi(x) < 0\\ \lambda f_{+}(x) + (1 - \lambda)f_{-}(x), \text{ when } \phi(x) = 0, \text{ for some } \lambda \in [0, 1) \end{cases}$$
(DISC)

We do have a set when $\phi(x) = 0 \Rightarrow \dot{x} \in F(x)$.

Definition

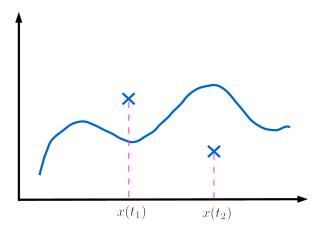
Given a time-interval [0, T) with $T \in (0, \infty]$ and an initial value x_0 , we say that $x : [0, T) \to \mathbb{R}^n$ is a solution to DISC on [0, T) initialized at $x_0 \in \mathbb{R}^n$ if it is absolutely continuous on (0, T) and satisfies:

•
$$x(0) = x_0$$

• $\dot{x}(t) \in F(x(t))$ for almost all $t \in [0, T]$

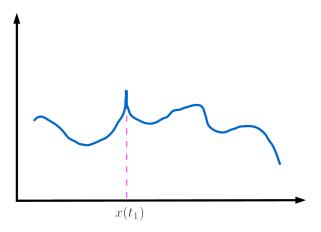
Differential inclusions: "almost everywhere"

"almost all t = for all t except those in a set of Lebesgue measure zero"



Differential inclusions: "almost everywhere"

"almost all t = for all t except those in a set of Lebesgue measure zero"



Differential inclusions: absolute continuity

We say that $f : [0, T] \rightarrow \mathbb{R}^n$ is absolutely continuous if:

- f has a derivative f' almost everywhere on [0, T]
- f' is (Lebesgue) integrable

•
$$f(t) = f(0) + \int_0^T f'(\tau) d\tau$$
 for all $t \in [0, T]$.

Absolute continuity \Rightarrow continuity

Difference equations: easy!

Consider

$$x^+ \in G(x)$$
 (DT-incl)

< < >> < <</>

where $G : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$.

Definition

Given an initial value x_0 , we say that $x : \mathbb{Z}_{\geq 0} \to \mathbb{R}^n$ is a solution to DT-incl initialized at $x_0 \in \mathbb{R}^n$ if

•
$$x(0) = x_0$$
,

•
$$x(j+1) \in G(x(j))$$
 for all $j \in \mathbb{Z}_{\geq 0}$.

Good properties:

- Solution are defined for all positive time $i \in \mathbb{Z}_{\geq 0}$ (it cannot explode in finite-time).
- Solutions are unique if G(x) is single-valued for any $x \in \mathbb{R}^n$.

Difference equations: examples

- $x^+ = x^2$ for $x \in \mathbb{R}$ $x(1) = x_0^2$ $x(2) = x(1)^2 = x_0^4$ etc.
- (Jump counter) $x^+ = x + 1$ for $x \in \mathbb{Z}_{\geq 0}$ x(1) = x(0) + 1 x(2) = x(1) + 1 = x(0) + 2x(k) = x(0) + k for $k \in \mathbb{Z}_{>0}$.
- (Set-valued case) $x^+ \in [T_{\min}, T_{\max}]$ where $-\infty < T_{\min} \le T_{\max} < \infty$ $x(1) \in [T_{\min}, T_{\max}]$ $x(k) \in [T_{\min}, T_{\max}]$ for $k \in \mathbb{Z}_{>0}$.

Difference equations: examples

- $x^+ = x^2$ for $x \in \mathbb{R}$ $x(1) = x_0^2$ $x(2) = x(1)^2 = x_0^4$ etc.
- (Jump counter) $x^+ = x + 1$ for $x \in \mathbb{Z}_{\geq 0}$ x(1) = x(0) + 1 x(2) = x(1) + 1 = x(0) + 2x(k) = x(0) + k for $k \in \mathbb{Z}_{\geq 0}$.

• (Set-valued case) $x^+ \in [T_{\min}, T_{\max}]$ where $-\infty < T_{\min} \le T_{\max} < \infty$ $x(1) \in [T_{\min}, T_{\max}]$

 $\kappa(k) \in [T_{\min}, T_{\max}]$ for $k \in \mathbb{Z}_{\geq 0}$

< < >>

Difference equations: examples

- $x^+ = x^2$ for $x \in \mathbb{R}$ $x(1) = x_0^2$ $x(2) = x(1)^2 = x_0^4$ etc.
- (Jump counter) $x^+ = x + 1$ for $x \in \mathbb{Z}_{\geq 0}$ x(1) = x(0) + 1 x(2) = x(1) + 1 = x(0) + 2x(k) = x(0) + k for $k \in \mathbb{Z}_{\geq 0}$.
- (Set-valued case) $x^+ \in [T_{\min}, T_{\max}]$ where $-\infty < T_{\min} \le T_{\max} < \infty$

 $\begin{aligned} & x(1) \in [T_{\min}, T_{\max}] \\ & x(k) \in [T_{\min}, T_{\max}] \text{ for } k \in \mathbb{Z}_{\geq 0}. \end{aligned}$

Overview

Modeling framework

2 Continuous- and discrete-time systems

3 New phenomena

4 The solution concept

5 Well-posed hybrid systems

6 Summary

It is time to move to hybrid systems.

Consider

$$\left\{ \begin{array}{rrrr} \dot{x} & = & 1 & \quad x \in [0,1] \\ x^+ & = & 2 & \quad x \in \{1\}. \end{array} \right.$$

Let x = 0.

- At t = 1, x(t) = 1.
- A jump occurs and x becomes equal to 2.
- x has left C and $D \rightarrow$ it stops to exist.

Solution may not be defined for all times because it may leave $C \cup D$, in which case we can no longer define it.

How to avoid this?

When $G(D) \subseteq C \cup D$, after a jump, we remain in $C \cup D$.

Here $G(D) = \{2\} \nsubseteq C \cup D$.

It is time to move to hybrid systems.

Consider

$$\begin{cases} \dot{x} &= 1 & x \in [0,1] \\ x^+ &= 2 & x \in \{1\}. \end{cases}$$

Let x = 0.

- At t = 1, x(t) = 1.
- A jump occurs and x becomes equal to 2.
- x has left C and $D \rightarrow$ it stops to exist.

Solution may not be defined for all times because it may leave $C \cup D$, in which case we can no longer define it.

How to avoid this?

When $G(D) \subseteq C \cup D$, after a jump, we remain in $C \cup D$.

Here $G(D) = \{2\} \nsubseteq C \cup D$.

It is time to move to hybrid systems.

Consider

$$\begin{cases} \dot{x} = 1 & x \in [0, 1] \\ x^+ = 2 & x \in \{1\}. \end{cases}$$

Let x = 0.

- At t = 1, x(t) = 1.
- A jump occurs and x becomes equal to 2.
- x has left C and $D \rightarrow$ it stops to exist.

Solution may not be defined for all times because it may leave $C \cup D$, in which case we can no longer define it.

```
How to avoid this?
When G(D) \subseteq C \cup D, after a jump, we remain in C \cup D.
Here G(D) = \{2\} \notin C \cup D.
```

It is time to move to hybrid systems.

Consider

$$\left\{ \begin{array}{rrrr} \dot{x} & = & 1 & \quad x \in [0,1] \\ x^+ & = & 2 & \quad x \in \{1\}. \end{array} \right.$$

Let x = 0.

- At t = 1, x(t) = 1.
- A jump occurs and x becomes equal to 2.
- x has left C and $D \rightarrow$ it stops to exist.

Solution may not be defined for all times because it may leave $C \cup D$, in which case we can no longer define it.

How to avoid this?

When $G(D) \subseteq C \cup D$, after a jump, we remain in $C \cup D$.

Here $G(D) = \{2\} \notin C \cup D$.

New phenomena: stuck at the border

Consider

$$\begin{cases} \dot{x} = 1 & x \in [0,1] \\ x^+ = 2 & x \in \{2\}. \end{cases}$$

Let x = 0.

- At t = 1, x(t) = 1.
- A jump cannot occur as D = {2} and it cannot flow as, if we would keep flowing, x would leave set C
- $\rightarrow x$ is stuck at the border of C!

How to avoid this?

By requiring that, the solution can flow when $x \in C \setminus D$. We will formalize this later using the concept of tangent cone.

Image: A image: A

New phenomena: stuck at the border

Consider

$$\begin{cases} \dot{x} = 1 & x \in [0,1] \\ x^+ = 2 & x \in \{2\}. \end{cases}$$

Let x = 0.

- At t = 1, x(t) = 1.
- A jump cannot occur as $D = \{2\}$ and it cannot flow as, if we would keep flowing, x would leave set C
- $\rightarrow x$ is stuck at the border of C!

How to avoid this?

By requiring that, the solution can flow when $x \in C \setminus D$. We will formalize this later using the concept of tangent cone.

New phenomena: stuck at the border

Consider

$$\begin{cases} \dot{x} = 1 & x \in [0,1] \\ x^+ = 2 & x \in \{2\}. \end{cases}$$

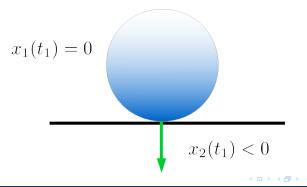
Let x = 0.

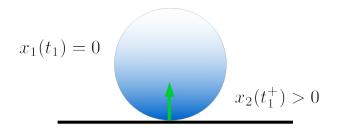
- At t = 1, x(t) = 1.
- A jump cannot occur as $D = \{2\}$ and it cannot flow as, if we would keep flowing, x would leave set C
- $\rightarrow x$ is stuck at the border of C!

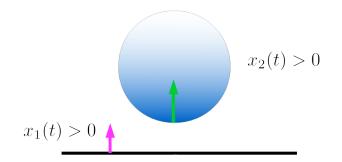
How to avoid this?

By requiring that, the solution can flow when $x \in C \setminus D$. We will formalize this later using the concept of tangent cone.









Bouncing ball where a jump corresponds to an impact of the ball

$$\dot{x} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{cases} \begin{pmatrix} x_2 \\ -\gamma \end{pmatrix} & x_1 > 0 \text{ or } (x_1 = 0 \text{ and } x_2 > 0) \\ \begin{pmatrix} 0 \\ 0 \end{pmatrix} & x_1 = 0 \text{ and } x_2 = 0 \\ \begin{pmatrix} x_1 \\ x_2^+ \end{pmatrix} = \begin{pmatrix} x_1 \\ -\lambda x_2 \end{pmatrix} & x_1 = 0 \text{ and } x_2 < 0$$

where

- $x_1 \in \mathbb{R}$ is the height
- $x_2 \in \mathbb{R}$ is the vertical velocity
- $\gamma > 0$ is the acceleration due to gravity
- $\lambda \in (0,1)$

If $x_1(0) = 0$ and $x_2(0) > 0$, the jumps times t_i , $i \in \mathcal{J} \subseteq \mathbb{Z}_{\geq 0}$, are related through

$$t_{i+1} = t_i + \frac{2\lambda^i}{\gamma} x_2(0)$$

Hence, assuming $t_0 = 0$,

$$t_i = \sum_{j=0}^{i} \frac{2\lambda^i}{\gamma} x_2(0)$$
$$= \frac{2}{\gamma} x_2(0) \frac{1-\lambda^{i+1}}{1-\lambda}$$

Consequently,

$$t_i
ightarrow rac{2}{\gamma} x_2(0) rac{1}{1-\lambda} ext{ as } i
ightarrow \infty$$

The solution jumps infinitely many times in finite time: Zeno phenomenon

We will see that this is not an issue with the hybrid formalism in terms of existence of solutions.

イロト イヨト イヨト イ

Overview

Modeling framework

2 Continuous- and discrete-time systems

8 New phenomena

4 The solution concept

5 Well-posed hybrid systems

6 Summary

The solution concept: key idea

System

$$\left\{ \begin{array}{rrrr} \dot{x} & \in & F(x) & \quad x \in C \\ x^+ & \in & G(x) & \quad x \in D \end{array} \right.$$

 $\begin{array}{l} \text{continuous time } t \in \mathbb{R}_{\geq 0} \\ \text{discrete time } j \in \mathbb{Z}_{\geq 0} \end{array} \qquad \qquad (\mathcal{H})$

(日)

Key idea

To parameterize solutions both by t and j.

We therefore write

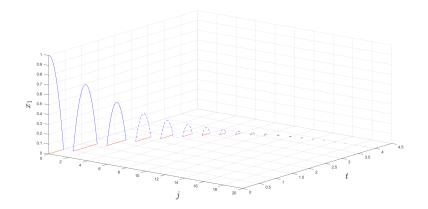
x(t, j)

 \rightarrow we keep track of

- the elapsed continuous time,
- the number of jumps the solution has experienced.

The solution concept: key idea

Bouncing ball (x_1 component)



The solution concept: key idea

We will no longer write x(t) for $t \in [0, T)$ where $T \in (0, \infty]$

We write instead x(t,j) for

$$(t,j) \in \bigcup_{i=0}^{J} [t_i, t_{i+1}] \times \{i\},$$

or equivalently

$$(t,j)\in igcup_{i=0}^J\left([t_i,t_{i+1}],i
ight)$$

The solution concept: the domain of a set-valued map

Definition

Given a set-valued mapping $M : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$, the **domain** of M is the set

dom $M = \{x \in \mathbb{R}^m : M(x) \neq \emptyset\}.$

Examples:

•
$$x^+ = x^2 = G(x)$$
, dom $G = \mathbb{R}$, $x(j) = x(0)^{2j}$, dom $x = \mathbb{Z}_{\geq 0}$.

•
$$\dot{x} = x^2 = F(x)$$
, dom $F = \mathbb{R}$, $x(t) = \frac{x_0}{1 - tx_0}$, dom $x = [0, \frac{1}{x_0})$ when $x_0 > 0$.

• $F(x) = S \neq \emptyset$ when $x \in C$ and $F(x) = \emptyset$ when $x \in \mathbb{R}^n \setminus C$, dom F = C.

Image: A math the second se

The solution concept: the domain of a set-valued map

Definition

Given a set-valued mapping $M : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$, the **domain** of M is the set

dom
$$M = \{x \in \mathbb{R}^m : M(x) \neq \emptyset\}.$$

Examples:

•
$$x^+ = x^2 = G(x)$$
, dom $G = \mathbb{R}$, $x(j) = x(0)^{2j}$, dom $x = \mathbb{Z}_{\geq 0}$.

•
$$\dot{x} = x^2 = F(x)$$
, dom $F = \mathbb{R}$, $x(t) = \frac{x_0}{1 - tx_0}$, dom $x = [0, \frac{1}{x_0})$ when $x_0 > 0$.

• $F(x) = S \neq \emptyset$ when $x \in C$ and $F(x) = \emptyset$ when $x \in \mathbb{R}^n \setminus C$, dom F = C.

A D F A P F A P F A

The solution concept: the domain of a set-valued map

Definition

Given a set-valued mapping $M : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$, the **domain** of M is the set

dom
$$M = \{x \in \mathbb{R}^m : M(x) \neq \emptyset\}.$$

Examples:

•
$$x^+ = x^2 = G(x)$$
, dom $G = \mathbb{R}$, $x(j) = x(0)^{2j}$, dom $x = \mathbb{Z}_{\geq 0}$.

•
$$\dot{x} = x^2 = F(x)$$
, dom $F = \mathbb{R}$, $x(t) = \frac{x_0}{1 - tx_0}$, dom $x = [0, \frac{1}{x_0})$ when $x_0 > 0$.

•
$$F(x) = S \neq \emptyset$$
 when $x \in C$ and $F(x) = \emptyset$ when $x \in \mathbb{R}^n \setminus C$, dom $F = C$.

< < >> < <</>

The solution concept: hybrid time domains

Definition

A subset $E \subset \mathbb{R}_{\geq 0} \times \mathbb{Z}_{\geq 0}$ is a compact hybrid time domain if

$$\mathsf{E} = igcup_{j=0}^{J-1} igl([t_j, t_{j+1}], jigr)$$

for some finite sequence of times $0 = t_0 \le t_1 \le t_2 \le \ldots \le t_J$. It is a **hybrid time domain** if for all $(T, J) \in E$, $E \cap ([0, T] \times \{0, 1, \ldots, J\})$ is a compact hybrid time domain.

A solution ϕ to a hybrid system is defined on/associated to a hybrid time domain denoted $\operatorname{dom} \phi$

A D F A P F A P F A

The solution concept: hybrid arc

Definition

A function $\phi: E \to \mathbb{R}^n$ is a hybrid arc if:

- E is a hybrid time domain,
- for each $j \in \mathbb{Z}_{\geq 0}$, the function $t \mapsto \phi(t, j)$ is locally absolutely continuous on $l^j = t : (t, j) \in E$.
- I^{j} ? If we denote the continuous time instants at which a jump occurs as t_j , $I^{j} = [t_j, t_{j+1}]$.
- locally absolutely continuous? absolutely continuous on each compact subinterval of I^j.

Some notations

$$\begin{split} \sup_t \operatorname{dom} \phi &:= \sup \left\{ t \in \mathbb{R}_{\geq 0} \ : \ \exists j \in \mathbb{Z}_{\geq 0} \ \text{such that} \ (t,j) \in \operatorname{dom} \phi \right\} \\ \sup_j \operatorname{dom} \phi &:= \sup \left\{ j \in \mathbb{Z}_{\geq 0} \ : \ \exists t \in \mathbb{R}_{\geq 0} \ \text{such that} \ (t,j) \in \operatorname{dom} \phi \right\} \end{split}$$

Definition

- **nontrivial** if dom ϕ contains at least two points.
- complete, if dom φ is unbounded, i.e.

$$\max\left\{\sup_t \operatorname{dom} \phi, \sup_j \operatorname{dom} \phi\right\} = \infty$$

- *t*-complete if $\sup_t \operatorname{dom} \phi = \infty$.
- *j*-complete if $\sup_i \operatorname{dom} \phi = \infty$.
- **Zeno** if $\sup_i \operatorname{dom} \phi = \infty$ and $\sup_t \operatorname{dom} \phi < \infty$.

Some notations

$$\begin{split} \sup_t \operatorname{dom} \phi &:= \sup \left\{ t \in \mathbb{R}_{\geq 0} \ : \ \exists j \in \mathbb{Z}_{\geq 0} \ \text{such that} \ (t,j) \in \operatorname{dom} \phi \right\} \\ \sup_j \operatorname{dom} \phi &:= \sup \left\{ j \in \mathbb{Z}_{\geq 0} \ : \ \exists t \in \mathbb{R}_{\geq 0} \ \text{such that} \ (t,j) \in \operatorname{dom} \phi \right\} \end{split}$$

Definition

- **nontrivial** if dom ϕ contains at least two points.
- **complete**, if dom ϕ is unbounded, i.e.

$$\max\left\{\sup_t \operatorname{dom} \phi, \sup_j \operatorname{dom} \phi\right\} = \infty$$

- *t*-complete if $\sup_t \operatorname{dom} \phi = \infty$.
- *j*-complete if $\sup_i \operatorname{dom} \phi = \infty$
- Zeno if $\sup_i \operatorname{dom} \phi = \infty$ and $\sup_t \operatorname{dom} \phi < \infty$.

Some notations

$$\begin{split} \sup_t \operatorname{dom} \phi &:= \sup \left\{ t \in \mathbb{R}_{\geq 0} \ : \ \exists j \in \mathbb{Z}_{\geq 0} \ \text{such that} \ (t,j) \in \operatorname{dom} \phi \right\} \\ \sup_j \operatorname{dom} \phi &:= \sup \left\{ j \in \mathbb{Z}_{\geq 0} \ : \ \exists t \in \mathbb{R}_{\geq 0} \ \text{such that} \ (t,j) \in \operatorname{dom} \phi \right\} \end{split}$$

Definition

- **nontrivial** if dom ϕ contains at least two points.
- **complete**, if dom ϕ is unbounded, i.e.

$$\max\left\{\sup_t \operatorname{dom} \phi, \sup_j \operatorname{dom} \phi\right\} = \infty$$

- *t*-complete if $\sup_t \operatorname{dom} \phi = \infty$.
- *j*-complete if sup_i dom $\phi = \infty$
- Zeno if $\sup_i \operatorname{dom} \phi = \infty$ and $\sup_t \operatorname{dom} \phi < \infty$.

Some notations

$$\begin{split} \sup_t \operatorname{dom} \phi &:= \sup \left\{ t \in \mathbb{R}_{\geq 0} \ : \ \exists j \in \mathbb{Z}_{\geq 0} \ \text{such that} \ (t,j) \in \operatorname{dom} \phi \right\} \\ \sup_j \operatorname{dom} \phi &:= \sup \left\{ j \in \mathbb{Z}_{\geq 0} \ : \ \exists t \in \mathbb{R}_{\geq 0} \ \text{such that} \ (t,j) \in \operatorname{dom} \phi \right\} \end{split}$$

Definition

- **nontrivial** if dom ϕ contains at least two points.
- **complete**, if dom ϕ is unbounded, i.e.

$$\max\left\{\sup_t \operatorname{dom} \phi, \sup_j \operatorname{dom} \phi\right\} = \infty$$

- *t*-complete if $\sup_t \operatorname{dom} \phi = \infty$.
- *j*-complete if $\sup_i \operatorname{dom} \phi = \infty$.
- **Zeno** if $\sup_i \operatorname{dom} \phi = \infty$ and $\sup_t \operatorname{dom} \phi < \infty$.

Some notations

$$\begin{split} \sup_t \operatorname{dom} \phi &:= \sup \left\{ t \in \mathbb{R}_{\geq 0} \ : \ \exists j \in \mathbb{Z}_{\geq 0} \ \text{such that} \ (t,j) \in \operatorname{dom} \phi \right\} \\ \sup_j \operatorname{dom} \phi &:= \sup \left\{ j \in \mathbb{Z}_{\geq 0} \ : \ \exists t \in \mathbb{R}_{\geq 0} \ \text{such that} \ (t,j) \in \operatorname{dom} \phi \right\} \end{split}$$

Definition

- **nontrivial** if dom ϕ contains at least two points.
- **complete**, if dom ϕ is unbounded, i.e.

$$\max\left\{\sup_t \operatorname{dom} \phi, \sup_j \operatorname{dom} \phi\right\} = \infty$$

- *t*-complete if $\sup_t \operatorname{dom} \phi = \infty$.
- *j*-complete if $\sup_i \operatorname{dom} \phi = \infty$.
- **Zeno** if $\sup_i \operatorname{dom} \phi = \infty$ and $\sup_t \operatorname{dom} \phi < \infty$.

The solution concept: a detour to the basic assumptions (simplified)

Consider the hybrid differential equation

$$\dot{x} = f(x) \quad x \in C, \qquad x^+ = g(x) \quad x \in D.$$

Basic assumptions

Flow and jump sets:

• C and D are closed subsets of \mathbb{R}^n .

Flow map $f : \mathbb{R}^n \to \mathbb{R}^n$:

- f is continuous,
- $C \subset \operatorname{dom} f$.

Jump map $g : \mathbb{R}^n \to \mathbb{R}^n$:

- g continuous,
- $D \subset \operatorname{dom} g$.

< < >>

We are going to generalize these assumptions to differential and difference inclusions, i.e. $\dot{x} \in F(x)$ and $x^+ \in G(x)$

When F is single-valued (we denote it f), f has to be continuous. We ask for similar properties when F is set-valued.

Continuity of f means that for any converging sequence $x_n \to x$ as $n \to \infty$, $f(x_n) \to f(x)$ as $n \to \infty$.

 \rightarrow We ask for a similar property for F, namely that for any $x_n \rightarrow x$ as $n \rightarrow \infty$, and any converging sequence $u_n \in F(x_n)$, with $u_n \rightarrow u$ as $n \rightarrow \infty$, $u \in F(x)$: we talk of **outer-semicontinuity**.

When $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuous, we also know that for any x, there exists a bounded neighborhood of x denoted \mathcal{B} , such that $f(\mathcal{B})$ is bounded.

 \rightarrow We ask for a similar property for F: we talk of **local boundedness**

We need, in addition, some convexity properties for F to be able to define solutions as we saw to cope with sliding modes.

Similar conditions apply to *G*, except the convexity property.

(日)

We are going to generalize these assumptions to differential and difference inclusions, i.e. $\dot{x} \in F(x)$ and $x^+ \in G(x)$

When F is single-valued (we denote it f), f has to be continuous. We ask for similar properties when F is set-valued.

Continuity of f means that for any converging sequence $x_n \to x$ as $n \to \infty$, $f(x_n) \to f(x)$ as $n \to \infty$.

→ We ask for a similar property for F, namely that for any $x_n \to x$ as $n \to \infty$, and any converging sequence $u_n \in F(x_n)$, with $u_n \to u$ as $n \to \infty$, $u \in F(x)$: we talk of **outer-semicontinuity**.

When $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuous, we also know that for any x, there exists a bounded neighborhood of x denoted \mathcal{B} , such that $f(\mathcal{B})$ is bounded.

 \rightarrow We ask for a similar property for F: we talk of **local boundedness**

We need, in addition, some convexity properties for F to be able to define solutions as we saw to cope with sliding modes.

Similar conditions apply to *G*, except the convexity property.

We are going to generalize these assumptions to differential and difference inclusions, i.e. $\dot{x} \in F(x)$ and $x^+ \in G(x)$

When F is single-valued (we denote it f), f has to be continuous. We ask for similar properties when F is set-valued.

Continuity of f means that for any converging sequence $x_n \to x$ as $n \to \infty$, $f(x_n) \to f(x)$ as $n \to \infty$.

 \rightarrow We ask for a similar property for F, namely that for any $x_n \rightarrow x$ as $n \rightarrow \infty$, and any converging sequence $u_n \in F(x_n)$, with $u_n \rightarrow u$ as $n \rightarrow \infty$, $u \in F(x)$: we talk of **outer-semicontinuity**.

When $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuous, we also know that for any x, there exists a bounded neighborhood of x denoted \mathcal{B} , such that $f(\mathcal{B})$ is bounded.

 \rightarrow We ask for a similar property for F: we talk of **local boundedness**

We need, in addition, some convexity properties for F to be able to define solutions as we saw to cope with sliding modes.

Similar conditions apply to *G*, except the convexity property.

We are going to generalize these assumptions to differential and difference inclusions, i.e. $\dot{x} \in F(x)$ and $x^+ \in G(x)$

When F is single-valued (we denote it f), f has to be continuous. We ask for similar properties when F is set-valued.

Continuity of f means that for any converging sequence $x_n \to x$ as $n \to \infty$, $f(x_n) \to f(x)$ as $n \to \infty$.

 \rightarrow We ask for a similar property for F, namely that for any $x_n \rightarrow x$ as $n \rightarrow \infty$, and any converging sequence $u_n \in F(x_n)$, with $u_n \rightarrow u$ as $n \rightarrow \infty$, $u \in F(x)$: we talk of **outer-semicontinuity**.

When $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuous, we also know that for any x, there exists a bounded neighborhood of x denoted \mathcal{B} , such that $f(\mathcal{B})$ is bounded.

 \rightarrow We ask for a similar property for F: we talk of **local boundedness**

We need, in addition, some convexity properties for F to be able to define solutions as we saw to cope with sliding modes.

Similar conditions apply to *G*, except the convexity property.

We are going to generalize these assumptions to differential and difference inclusions, i.e. $\dot{x} \in F(x)$ and $x^+ \in G(x)$

When F is single-valued (we denote it f), f has to be continuous. We ask for similar properties when F is set-valued.

Continuity of f means that for any converging sequence $x_n \to x$ as $n \to \infty$, $f(x_n) \to f(x)$ as $n \to \infty$.

 \rightarrow We ask for a similar property for F, namely that for any $x_n \rightarrow x$ as $n \rightarrow \infty$, and any converging sequence $u_n \in F(x_n)$, with $u_n \rightarrow u$ as $n \rightarrow \infty$, $u \in F(x)$: we talk of **outer-semicontinuity**.

When $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuous, we also know that for any x, there exists a bounded neighborhood of x denoted \mathcal{B} , such that $f(\mathcal{B})$ is bounded.

 \rightarrow We ask for a similar property for F: we talk of **local boundedness**

We need, in addition, some convexity properties for F to be able to define solutions as we saw to cope with sliding modes.

Similar conditions apply to G, except the convexity property.

We are going to generalize these assumptions to differential and difference inclusions, i.e. $\dot{x} \in F(x)$ and $x^+ \in G(x)$

When F is single-valued (we denote it f), f has to be continuous. We ask for similar properties when F is set-valued.

Continuity of f means that for any converging sequence $x_n \to x$ as $n \to \infty$, $f(x_n) \to f(x)$ as $n \to \infty$.

 \rightarrow We ask for a similar property for F, namely that for any $x_n \rightarrow x$ as $n \rightarrow \infty$, and any converging sequence $u_n \in F(x_n)$, with $u_n \rightarrow u$ as $n \rightarrow \infty$, $u \in F(x)$: we talk of **outer-semicontinuity**.

When $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuous, we also know that for any x, there exists a bounded neighborhood of x denoted \mathcal{B} , such that $f(\mathcal{B})$ is bounded.

 \rightarrow We ask for a similar property for F: we talk of **local boundedness**

We need, in addition, some convexity properties for F to be able to define solutions as we saw to cope with sliding modes.

Similar conditions apply to G, except the convexity property.

We are going to generalize these assumptions to differential and difference inclusions, i.e. $\dot{x} \in F(x)$ and $x^+ \in G(x)$

When F is single-valued (we denote it f), f has to be continuous. We ask for similar properties when F is set-valued.

Continuity of f means that for any converging sequence $x_n \to x$ as $n \to \infty$, $f(x_n) \to f(x)$ as $n \to \infty$.

 \rightarrow We ask for a similar property for F, namely that for any $x_n \rightarrow x$ as $n \rightarrow \infty$, and any converging sequence $u_n \in F(x_n)$, with $u_n \rightarrow u$ as $n \rightarrow \infty$, $u \in F(x)$: we talk of **outer-semicontinuity**.

When $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuous, we also know that for any x, there exists a bounded neighborhood of x denoted \mathcal{B} , such that $f(\mathcal{B})$ is bounded.

 \rightarrow We ask for a similar property for F: we talk of **local boundedness**

We need, in addition, some convexity properties for F to be able to define solutions as we saw to cope with sliding modes.

Similar conditions apply to G, except the convexity property.

We are going to generalize these assumptions to differential and difference inclusions, i.e. $\dot{x} \in F(x)$ and $x^+ \in G(x)$

When F is single-valued (we denote it f), f has to be continuous. We ask for similar properties when F is set-valued.

Continuity of f means that for any converging sequence $x_n \to x$ as $n \to \infty$, $f(x_n) \to f(x)$ as $n \to \infty$.

 \rightarrow We ask for a similar property for F, namely that for any $x_n \rightarrow x$ as $n \rightarrow \infty$, and any converging sequence $u_n \in F(x_n)$, with $u_n \rightarrow u$ as $n \rightarrow \infty$, $u \in F(x)$: we talk of **outer-semicontinuity**.

When $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuous, we also know that for any x, there exists a bounded neighborhood of x denoted \mathcal{B} , such that $f(\mathcal{B})$ is bounded.

 \rightarrow We ask for a similar property for F: we talk of **local boundedness**

We need, in addition, some convexity properties for F to be able to define solutions as we saw to cope with sliding modes.

Similar conditions apply to G, except the convexity property.

Recall

$$\dot{x} \in F(x)$$
 $x \in C$, $x^+ \in G(x)$ $x \in D$.

Basic assumptions

Flow and jump sets:

• C and D are closed subsets of \mathbb{R}^n .

Flow map $F : \mathbb{R}^n \Rightarrow \mathbb{R}^n$:

- F is outer semi-continuous,
- F is locally bounded relative to C,
- $C \subset \operatorname{dom} F$,
- F(x) is convex for every $x \in C$.

Jump map $G : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$:

- *G* is outer semi-continuous,
- G is locally bounded relative to D,
- $D \subset \text{dom } G$.

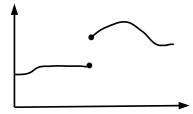
A set-valued map $F : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ is outer semicontinuous at $x \in \mathbb{R}^m$ if for any sequence $x_n, n \in \mathbb{Z}_{\geq 0}$ converging to x, and any sequence $u_n \in F(x_n)$ converging to u, then $u \in F(x)$.

Equivalent characterization: F is outer semicontinuous if $\{(x, z) : z \in F(x)\}$ is closed.

The solution concept: outer semicontinuity

A set-valued map $F : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ is outer semicontinuous at $x \in \mathbb{R}^m$ if for any sequence $x_n, n \in \mathbb{Z}_{\geq 0}$ converging to x, and any sequence $u_n \in F(x_n)$ converging to u, then $u \in F(x)$.

Equivalent characterization: F is outer semicontinuous if $\{(x, z) : z \in F(x)\}$ is closed.



A set-valued map $F : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ is locally bounded at x, if there exists a neighborhood U of x such that F(U) is bounded.



Recall

$$\dot{x} = \begin{cases} \begin{pmatrix} x_2 \\ -\gamma \end{pmatrix} & x_1 > 0 \text{ or } (x_1 = 0 \text{ and } x_2 > 0) \\ \begin{pmatrix} 0 \\ 0 \end{pmatrix} & x_1 = 0 \text{ and } x_2 = 0 \\ x^+ = \begin{pmatrix} x_1 \\ -\lambda x_2 \end{pmatrix} & x_1 = 0 \text{ and } x_2 < 0 \end{cases}$$

The flow and jump sets are not closed because of strict inequalities, so we redefine these are

$$C = \{(x_1, x_2) : x_1 \ge 0\}$$
$$D = \{(x_1, x_2) : x_1 = 0 \text{ and } x_2 \le 0\}$$

The jump map is continuous √

The flow map is not outer-semicontinuous at x = 0. Indeed, $f(x) \to (0, -\gamma)$ as $x \to 0$, while f(0) = (0, 0). We can regularize it as follows

$$F(x) = \begin{cases} \begin{pmatrix} x_2 \\ -\gamma \end{pmatrix} & x \neq 0 \\ 0 \\ \{-\gamma, 0\} \end{pmatrix} & x = 0 \end{cases}$$

Now *F* is convex, outer-semicontinuous and locally bounded as desired.

Recall

$$\dot{x} = \begin{cases} \begin{pmatrix} x_2 \\ -\gamma \end{pmatrix} & x_1 > 0 \text{ or } (x_1 = 0 \text{ and } x_2 > 0) \\ \begin{pmatrix} 0 \\ 0 \end{pmatrix} & x_1 = 0 \text{ and } x_2 = 0 \\ x^+ = \begin{pmatrix} x_1 \\ -\lambda x_2 \end{pmatrix} & x_1 = 0 \text{ and } x_2 < 0 \end{cases}$$

The flow and jump sets are not closed because of strict inequalities, so we redefine these are

$$C = \{(x_1, x_2) : x_1 \ge 0\}$$
$$D = \{(x_1, x_2) : x_1 = 0 \text{ and } x_2 \le 0\}$$

The jump map is continuous √

The flow map is not outer-semicontinuous at x = 0. Indeed, $f(x) \rightarrow (0, -\gamma)$ as $x \rightarrow 0$, while f(0) = (0, 0). We can regularize it as follows

$$F(x) = \begin{cases} \begin{pmatrix} x_2 \\ -\gamma \end{pmatrix} & x \neq 0 \\ \begin{pmatrix} 0 \\ [-\gamma, 0] \end{pmatrix} & x = 0 \end{cases}$$

Now F is convex, outer-semicontinuous and locally bounded as desired.

The solution concept: hybrid solution

Recall

$$\dot{x} \in F(x)$$
 $x \in C$, $x^+ \in G(x)$ $x \in D$. (\mathcal{H})

Definition

A hybrid arc is a solution to $\ensuremath{\mathcal{H}}$ if:

- $\phi(0,0) \in C \cup D$,
- for every $j \in \mathbb{Z}_{\geq 0}$, for almost all $t \in l^j = \{t : (t,j) \in \operatorname{dom} \phi\}$ (" $[t_j, t_{j+1}]$ "),

 $\phi(t,j) \in C$ and $\dot{\phi}(t,j) \in F(\phi(t,j)),$

• for every $(t,j) \in \operatorname{\mathsf{dom}} \phi$ such that $(t,j+1) \in \operatorname{\mathsf{dom}} \phi$,

 $\phi(t,j) \in D$ and $\phi(t,j+1) \in G(\phi(t,j))$.

The solution concept: hybrid solution

Recall

$$\dot{x} \in F(x)$$
 $x \in C$, $x^+ \in G(x)$ $x \in D$. (\mathcal{H})

Definition

A hybrid arc is a solution to ${\mathcal H}\,$ if:

- $\phi(0,0) \in C \cup D$,
- for every $j \in \mathbb{Z}_{\geq 0}$, for almost all $t \in l^j = \{t : (t,j) \in \operatorname{dom} \phi\}$ (" $[t_j, t_{j+1}]$ "),

 $\phi(t,j)\in {\sf C}$ and $\dot{\phi}(t,j)\in {\sf F}(\phi(t,j)),$

```
• for every (t,j) \in \operatorname{dom} \phi such that (t,j+1) \in \operatorname{dom} \phi,
```

 $\phi(t,j) \in D$ and $\phi(t,j+1) \in G(\phi(t,j))$.

The solution concept: hybrid solution

Recall

$$\dot{x} \in F(x) \quad x \in C, \qquad x^+ \in G(x) \quad x \in D.$$
 (H)

Definition

A hybrid arc is a solution to ${\mathcal H}\,$ if:

- $\phi(0,0) \in C \cup D$,
- for every $j \in \mathbb{Z}_{\geq 0}$, for almost all $t \in I^j = \{t : (t,j) \in \text{dom } \phi\}$ (" $[t_j, t_{j+1}]$ "),

 $\phi(t,j)\in {\sf C}$ and $\dot{\phi}(t,j)\in {\sf F}(\phi(t,j)),$

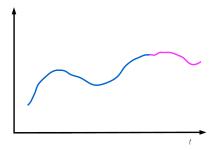
• for every $(t,j) \in \operatorname{dom} \phi$ such that $(t,j+1) \in \operatorname{dom} \phi$,

 $\phi(t,j) \in D$ and $\phi(t,j+1) \in G(\phi(t,j))$.

The solution concept: maximal solutions

Definition

A solution ϕ to hybrid system is **maximal** if there exist no other solutions ψ such that dom ϕ is a (proper) subset of dom ψ and $\phi(t,j) = \psi(t,j)$ for all $(t,j) \in \text{dom } \phi$.



The solution concept: conditions for the existence of non-trivial solutions

Recall: non-trivial solution means dom ϕ contains at least two points

When are we sure solutions are non-trivial?

Let $\xi \in C \cup D$. If	
• $\xi \in D$	
• OR $\xi \in C \setminus D$ and there exists a neighborhood U of ξ such that for any $x \in U \cap C$,	
$F(x) \cap T_C(x) \neq \emptyset,$	Viability Condition (VC)
then there exists a poptrivial solution ϕ with	

Tangent cone: The tangent cone to *C* at a $x \in \mathbb{R}^n$, denoted $T_C(x)$, is the set of all vectors $w \in \mathbb{R}^n$ for which there exist $x_i \in C$, $\tau_i > 0$ with $x_i \to x$ and $\tau_i \searrow 0$ as $i \to \infty$ and

$$w = \lim_{i \to \infty} \frac{x_i - x}{\tau_i}.$$

< < >> < <</>

The solution concept: conditions for the existence of non-trivial solutions

Recall: non-trivial solution means dom ϕ contains at least two points

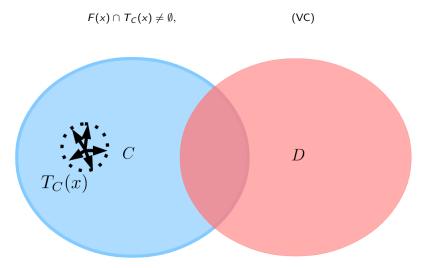
When are we sure solutions are non-trivial?

Proposition	
Let $\xi \in C \cup D$. If	
• $\xi \in D$	
• OR $\xi \in C \setminus D$ and there exists a neighborhood U of ξ such that for any $x \in U \cap C$,	
$F(x) \cap T_C(x) \neq \emptyset,$	Viability Condition (VC)
then there exists a nontrivial solution ϕ with $\phi(0,0) = \xi$.	

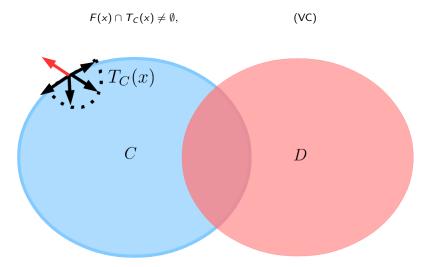
Tangent cone: The tangent cone to *C* at a $x \in \mathbb{R}^n$, denoted $T_C(x)$, is the set of all vectors $w \in \mathbb{R}^n$ for which there exist $x_i \in C$, $\tau_i > 0$ with $x_i \to x$ and $\tau_i \searrow 0$ as $i \to \infty$ and

$$w=\lim_{i\to\infty}\frac{x_i-x}{\tau_i}.$$

The solution concept: viability condition Recall



The solution concept: viability condition Recall



The solution concept: about non-trivial solutions

Can we say more about non-trivial solutions?

Proposition

If (VC) holds for any $\xi \in C \setminus D$, then there exists a nontrivial solution from every point in $C \cup D$, and every maximal solution satisfies one of the next conditions:

- (complete) φ is complete;
- (explosion in finite-time) φ explodes in finite continuous-time, in particular dom φ is bounded and I^J where J = ∑_j dom φ has nonempty interior and t ↦ |φ(t, J)| → ∞ as t → sup_t dom φ;
- (jumps outside $C \cup D$) $\phi(T, J) \notin C \cup D$ where $(T, J) = \sup \operatorname{dom} \phi$.

(日)

The solution concept: about non-trivial solutions

Can we say more about non-trivial solutions?

Proposition

If (VC) holds for any $\xi \in C \setminus D$, then there exists a nontrivial solution from every point in $C \cup D$, and every maximal solution satisfies one of the next conditions:

- (complete) φ is complete;
- (explosion in finite-time) φ explodes in finite continuous-time, in particular dom φ is bounded and I^J where J = ∑_j dom φ has nonempty interior and t → |φ(t, J)| → ∞ as t → sup_t dom φ;
- (jumps outside $C \cup D$) $\phi(T, J) \notin C \cup D$ where $(T, J) = \sup \operatorname{dom} \phi$.

The solution concept: examples

Consider again system

$$\begin{cases} \dot{x} &= 1 & x \in [0,1] \\ x^+ &= 2 & x \in \{1\}. \end{cases}$$

Viability condition: let $x \in C \setminus D = [0, 1)$,

- $T_C(0) = [0,\infty)$, consequently $T_C(0) \cap F(0) = [0,\infty) \cap \{1\} \neq \emptyset \checkmark$
- $T_C(x) = \mathbb{R}$ for any $x \in (0, 1)$, consequently $T_C(x) \cap F(x) = [0, \infty) \cap \{1\} \neq \emptyset \checkmark$

VC holds!

We have already seen that $G(D) \nsubseteq C \cup D$: one of the conditions of the proposition holds.

Image: A math the second se

The solution concept: examples

Consider again system

$$\begin{cases} \dot{x} &= 1 & x \in [0,1] \\ x^+ &= 2 & x \in \{2\}. \end{cases}$$

Viability condition: let $x \in C \setminus D = [0, 1]$,

- $T_C(0) = [0,\infty)$, consequently $T_C(0) \cap F(0) = [0,\infty) \cap \{1\} \neq \emptyset \checkmark$
- $T_C(x) = \mathbb{R}$ for any $x \in (0, 1)$, consequently $T_C(x) \cap F(x) = [0, \infty) \cap \{1\} \neq \emptyset \checkmark$
- $T_C(1) = (-\infty, 0]$, consequently $T_C(x) \cap F(1) = (-\infty, 0] \cap \{1\} = \emptyset \times$

VC does not hold!

The system has a trivial solution at x = 1.

The solution concept: examples

Regularized bouncing ball

$$\left\{ \begin{array}{rrr} \dot{x} & \in & \left\{ \begin{array}{cc} \begin{pmatrix} x_2 \\ -\gamma \end{pmatrix} & x \neq 0 \\ \begin{pmatrix} 0 \\ [-\gamma,0] \end{pmatrix} & x = 0 \\ x^+ & = & \left(\begin{array}{c} x_1 \\ -\lambda x_2 \end{array} \right) & x_1 = 0 \text{ and } x_2 \leq 0. \end{array} \right.$$

Viability condition: let $x \in C \setminus D$,

- when $x_1 > 0$, $T_C(x) = \mathbb{R}^2$, consequently $T_C(x) \cap F(x) = F(x) \neq \emptyset \checkmark$
- when $x_1 = 0$ and $x_2 > 0$, $T_C(x) = [0, \infty) \times \mathbb{R}$, consequently $T_C(x) \cap F(x) = ([0, \infty) \times \mathbb{R}) \cap (0, -\gamma) = (0, -\gamma) \neq \emptyset \checkmark$

VC holds!

 $G(D) = \{0\} \times ... \subset C \cup D.$

Solutions cannot explode in finite (continuous) time because the flow dynamics are affine.

We conclude that maximal solutions are complete, in particular they are Zeno as we know, which is not an issue here.

Can we say something about uniqueness of solutions?

Such conditions exist.

Not always a good idea when dealing with hybrid inclusions. Often difficult to ensure the basic conditions without sacrificing uniqueness of solutions.

Overview

Modeling framework

- 2 Continuous- and discrete-time systems
- 8 New phenomena
- 4 The solution concept
- **6** Well-posed hybrid systems

6 Summary

Traditionally, we say that a dynamical system is well-posed when

- it generates a solution for any initial condition,
- this solution is unique,
- solution continuously depend on parameters (and thus on initial conditions).

Too much to ask for hybrid systems and not necessary to build up a solid stability theory.

Notation: For any $x \in C \cup D$, S(x) is the set of all solutions initialized at x

Essentially, we say that a hybrid system is:

- nominally well-posed if, when we take a converging sequence of initial conditions x_n , the corresponding sequence of solution $\phi_n \in S(x_n)$ (which may be a set because of non-unique solutions) (graphically) converge to a solution.
- well-posed if this property remains true even if the system is perturbed by vanishing disturbances.

Fundamental property for robustness and in a number of proofs.

We do not have to worry about it thanks to the basic conditions.

Theorem

If a hybrid system satisfies the basic conditions, it is (nominally) well-posed.

(日)

Notation: For any $x \in C \cup D$, S(x) is the set of all solutions initialized at x

Essentially, we say that a hybrid system is:

- nominally well-posed if, when we take a converging sequence of initial conditions x_n , the corresponding sequence of solution $\phi_n \in S(x_n)$ (which may be a set because of non-unique solutions) (graphically) converge to a solution.
- well-posed if this property remains true even if the system is perturbed by vanishing disturbances.

Fundamental property for robustness and in a number of proofs.

We do not have to worry about it thanks to the basic conditions.

Theorem

If a hybrid system satisfies the basic conditions, it is (nominally) well-posed.

Notation: For any $x \in C \cup D$, S(x) is the set of all solutions initialized at x

Essentially, we say that a hybrid system is:

- nominally well-posed if, when we take a converging sequence of initial conditions x_n , the corresponding sequence of solution $\phi_n \in S(x_n)$ (which may be a set because of non-unique solutions) (graphically) converge to a solution.
- well-posed if this property remains true even if the system is perturbed by vanishing disturbances.

Fundamental property for robustness and in a number of proofs.

We do not have to worry about it thanks to the basic conditions.

Theorem

If a hybrid system satisfies the basic conditions, it is (nominally) well-posed.

Notation: For any $x \in C \cup D$, S(x) is the set of all solutions initialized at x

Essentially, we say that a hybrid system is:

- nominally well-posed if, when we take a converging sequence of initial conditions x_n , the corresponding sequence of solution $\phi_n \in S(x_n)$ (which may be a set because of non-unique solutions) (graphically) converge to a solution.
- well-posed if this property remains true even if the system is perturbed by vanishing disturbances.

Fundamental property for robustness and in a number of proofs.

We do not have to worry about it thanks to the basic conditions.

Theorem

If a hybrid system satisfies the basic conditions, it is (nominally) well-posed.

Notation: For any $x \in C \cup D$, S(x) is the set of all solutions initialized at x

Essentially, we say that a hybrid system is:

- nominally well-posed if, when we take a converging sequence of initial conditions x_n , the corresponding sequence of solution $\phi_n \in S(x_n)$ (which may be a set because of non-unique solutions) (graphically) converge to a solution.
- well-posed if this property remains true even if the system is perturbed by vanishing disturbances.

Fundamental property for robustness and in a number of proofs.

We do not have to worry about it thanks to the basic conditions.

Theorem

If a hybrid system satisfies the basic conditions, it is (nominally) well-posed.

Well-posed hybrid systems: ρ -perturbed hybrid system

 $\rho\text{-}\mathsf{perturbation}$ of the hybrid system

 $\rho: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ (continuous typically)

$$\begin{cases} \dot{x} \in F_{\rho}(x) & x \in C_{\rho} \\ x^{+} \in G_{\rho}(x) & x \in D_{\rho}, \end{cases}$$
(\mathcal{H}_{ρ})

where

$$\begin{array}{lll} \mathcal{C}_{\rho} & = & \{x : (x + \rho(x)\mathbb{B}) \cap \mathbb{C} \neq \emptyset\} \\ \mathcal{D}_{\rho} & = & \{x : (x + \rho(x)\mathbb{B}) \cap \mathbb{D} \neq \emptyset\} \\ \end{array} \\ \begin{array}{lll} \overset{\circ}{=} & C \text{ inflated by something of the order of } \rho(x)'' \\ \mathcal{D}_{\rho} & = & \{x : (x + \rho(x)\mathbb{B}) \cap \mathbb{D} \neq \emptyset\} \\ \end{array}$$

$$F_{\rho}(x) = \overline{\operatorname{con}} F\left((x + \rho(x)\mathbb{B}) \cap C\right) + \rho(x)\mathbb{B} \ \forall x \in \mathbb{R}^{n}, \ `` = f(x + \rho(x)) + \rho(x)''$$

$$G_{\rho}(x) = \{ v \in \mathbb{R}^n : v \in g + \rho(g)\mathbb{B}, g \in G\left((x + \rho(x)\mathbb{B}) \cap D\right) \} \quad \forall x \in \mathbb{R}^n$$

 $= g(x + \rho(x)) + \rho(x)''.$

and

- \mathbb{B} is the unit ball of \mathbb{R}^n
- later, when talking of stability $\rho(x) > 0$ when x not in the attractor

・ロト ・ 同ト ・ ヨト

Overview

Modeling framework

- 2 Continuous- and discrete-time systems
- 8 New phenomena
- 4 The solution concept
- **5** Well-posed hybrid systems

6 Summary

Summary

- Recall on solutions for differential/difference equations/inclusions
- Special care is needed when studying hybrid inclusions
- Notion of solutions for hybrid inclusions
- Conditions for existence of solutions
- Few words on the notion of well-posedness

We are ready to talk of stability

Summary: references

The book

• R. Goebel, R. Sanfelice and A. Teel, *Hybrid Dynamical Systems: Modeling, Stability and Robustness*, Princeton University Press, 2012.

Nonlinear systems

• H. Khalil, Nonlinear Systems, Prentice Hall, 3rd edition, 2002.

Set-valued maps

• R.T. Rockafellar, R.J.B. Wets, *Variational Analysis*, Springer Science & Business Media., 2009.

Hybrid systems with inputs

- C. Cai and A.R. Teel, *Characterizations of input-to-state stability for hybrid systems*, Systems & Control Letters, 2009.
- C. Cai and A.R. Teel, *Robust input-to-state stability for hybrid systems*, SIAM J. Control Optim., 2013.

Image: A matrix